## INOVANCE



# MD630 Series General-Purpose AC Drive Quick Start Guide











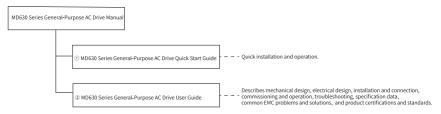




Data code 19012572A00

## **Preface**

#### Introduction


This product is a new generation of general-purpose AC drives from Inovance. The bus-type models come standard with a three-in-one high-speed bus communication interface. It is mainly used in silicon crystals, lithium batteries, 3C, semiconductor, ceramic, glass, rubber and plastics, cables, textile and other industries. The AC drives are designed to efficiently drive various types of loads, such as fans, water pump, roller and belt.

The AC drives range from 0.37 kW to 22 kW, with a total of five different frame sizes.

This guide is specifically designed for EU terminal commissioning engineers. It provides step-by-step instructions to quickly install and commission the AC drive.

#### More Information

The following figure and table describe document codes and document introduction of the drive.



| Data Name                                                             | Data Code | Description                                                                                                                     |
|-----------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|
| MD630 Series<br>Compact AC Drive<br>Quick Start Guide<br>(this guide) | 19012572  | This guide describes the installation and operation, common faults and troubleshooting, and parameter settings of the AC drive. |

## **Revision History**

| Date         | Version | Description      |
|--------------|---------|------------------|
| January 2025 | A00     | Initial release. |

#### Access to the Guide

This guide is not in the scope of delivery. If necessary, you can download the PDF file in three ways:

- Do keyword search under Service and Support at http://www.inovance.com.
- Scan the QR code on the product with your smart phone.

 Scan the QR code below to install My Inovance app, where you can search for and download manuals



#### **Warranty Disclaimer**

If your product becomes defective under normal use conditions, we will offer guaranteed repair services within the warranty period. Maintenance will be charged after the warranty expires.

The warranty does not cover any defect caused by:

- Damage caused by operations not following the instructions in the user guide
- Damage caused by fire, flood, or unusual voltage
- Damage caused by unintended use of the product
- Damage caused by use beyond the specified scope of application of the product
- Damage or secondary damage caused by force majeure (natural disaster, earthquake, and lightning strike)

The maintenance is charged according to the latest Price List of Inovance. If otherwise agreed upon, the terms and conditions in the agreement shall prevail.

For details, see Product Warranty Card.

## **Table of Contents**

| Preface                                           | . 1 |
|---------------------------------------------------|-----|
| Fundamental Safety Instructions                   | . 5 |
| 1 Shipment Check                                  | 11  |
| 2 Power Supply Compatibility Check                | 12  |
| 3 Unpacking and Handling                          | 13  |
| 4 AC Drive Installation                           | 15  |
| 4.1 Pre-installation Check                        | 15  |
| 4.2 Dimensions                                    | 15  |
| 4.3 Installation Clearance                        | 18  |
| 4.4 Screw-based Installation                      | 22  |
| 4.5 Through-hole Installation                     | 23  |
| 4.6 Installing AC Drive to DIN Rail               | 26  |
| 4.7 Post-installation Check                       | 27  |
| 5 AC Drive Wiring                                 | 28  |
| 5.1 Inspection Before Wiring                      | 28  |
| 5.2 Cable Preparation                             | 28  |
| 5.3 Power Cable Connection                        | 30  |
| 5.4 Connecting Control Cable                      | 30  |
| 5.5 Inspection After Wiring                       | 33  |
| 6 Quick Operation                                 | 35  |
| 6.1 Operating Panel                               | 35  |
| 6.1.1 Overview                                    |     |
| 6.1.2 Components                                  |     |
| 6.1.3 Display on the Operating Panel              |     |
| 6.2 Commissioning preparation                     |     |
| 6.2.1 Motor Type                                  |     |
| 6.2.2 Select Motor Parameter Group 1 on Nameplate |     |
| 6.2.3 Collect Data of AC Drive and Motor          |     |
| 6.2.4 Check Cables Connecting AC drive Motor      |     |
| 6.2.6 AC Drive Model Check                        |     |
| 6.2.7 Software Version Check                      |     |
| 6.3 Quick Commissioning                           |     |
| 6.3.1 Quick Commissioning Flowchart               | 44  |

| 6.3.2 Restore Factory Settings                                                              | 44  |
|---------------------------------------------------------------------------------------------|-----|
| 6.3.3 Setting Motor Parameters                                                              |     |
| 6.3.4 Setting the Motor Control Method                                                      |     |
| 6.3.5 Setting Motor Control Mode                                                            |     |
| 6.3.6 Motor Auto-tuning                                                                     |     |
| 6.3.7 Start/stop or set the speed and torque                                                |     |
| 6.3.7.1 Start/Stop or Set Speed and Torque Through Application N<br>(Applicable for MD630S) | 53  |
| 6.3.7.2 Start/Stop or Set Speed and Torque Through Operating Pa                             |     |
| 6.3.7.3 Start/Stop or Set Speed and Torque Through DI Terminal .                            |     |
| 6.3.7.4 Start/Stop AC Drive Through DI Terminal and Set Speed an Through Analog Setting     | 61  |
| 6.3.7.5 Start/Stop or Set Speed and Torque Through EtherCAT Cor<br>(Applicable for MD630N)  | 64  |
| 6.3.7.6 Start/Stop or Set Speed Through iFA                                                 | 72  |
| 7 Troubleshooting                                                                           | 82  |
| 8 Commissioning Parameters                                                                  | 112 |
| 8.1 Control Method and Control Mode                                                         | 112 |
| 8.2 Parameters Related to Frequency Settings                                                | 112 |
| 8.3 Parameters Related to Multi-reference                                                   | 114 |
| 8.4 Parameters Related to V/f Curve                                                         | 114 |
| 8.5 Parameters Related to SVC Curve                                                         | 115 |
| 8.6 Motor Phase Sequence Switchover                                                         | 116 |
| 8.7 Acceleration/Deceleration time                                                          | 117 |
| 8.8 Frequency Limits                                                                        | 117 |
| 8.9 Common Protection Parameter                                                             | 119 |
| 8.10 Startup Parameters                                                                     | 119 |
| 8.11 Stop Mode                                                                              | 120 |
| 8.12 Carrier Frequency Parameters                                                           | 120 |
| 8.13 I/O Parameters                                                                         | 121 |
| 8.14 Communication Parameters                                                               | 126 |

## **Fundamental Safety Instructions**

### **Safety Disclaimer**

- This section describes the safety precautions that help you use this product correctly.
   Before using this product, read the user guide thoroughly and correctly understand the related safety precautions. Failure to observe the safety precautions may result in serious injuries or death of personnel or device damage.
- "Danger", "Warning", and "Caution" items in this guide do not indicate all safety precautions that need to be followed; instead, they just supplement the safety precautions.
- Use this equipment according to the designated environment requirements. Damage caused by improper use is not covered by warranty.
- Inovance shall take no responsibility for any personal injuries or property damage caused by improper use.

#### **Safety Levels and Definitions**

DANGER Indicates that failure to comply with the notice will result in severe personal injuries or even death.

Indicates that failure to comply with the notice may result in severe personal injuries or even death.

CAUTION Indicates that failure to comply with the notice may result in minor or moderate personal injuries or equipment damage.

#### **Safety Precautions**

- Product illustrations in the user guide are sometimes shown without covers or
  protective guards. Remember to install the covers or protective guards as specified first,
  and then perform operations in accordance with the instructions.
- Product illustrations in this guide are for reference only. Actual products may vary.
- Personnel must take mechanical precautions to protect personal safety. Wear necessary
  protective safety gear, such as anti-smashing shoes, clothing, glasses, gloves, and
  sleeves.

#### Unpacking



- Do not install the equipment if you find damage, rust, or signs of use on the equipment or accessories upon unpacking.
- Do not install the equipment if you find water seepage or missing or damaged components upon unpacking.
- Do not install the equipment if you find the packing list does not conform to the equipment you received.



- Check whether the packing is intact and whether there is damage, water seepage, damp, and deformation.
- Unpack the package by following the unpacking sequence. Do not hit the package with force.
- Check whether there is damage, rust, or injuries on the surface of the equipment or equipment accessories.
- Check the materials and ensure all items are included.

#### Storage and transportation



- Large-scale or heavy equipment must be transported by qualified professionals using specialized hoisting equipment. Failure to comply may result in personal injury or equipment damage.
- Before hoisting the equipment, ensure the equipment components such as the front cover and terminal blocks are secured firmly with screws. Loosely-connected components may fall off and result in personal injuries or equipment damage.
- Never stand or stay below the equipment when the equipment is being hoisted by the hoisting equipment.
- When hoisting the equipment with a steel rope, ensure the equipment is hoisted at a
  constant speed without suffering from vibration or shock. Do not turn the equipment
  over or let the equipment stay hanging in the air. Failure to comply may result in
  personal injuries or equipment damage.



- Handle the equipment with care during transportation and mind your steps to prevent personal injuries or equipment damage.
- When carrying the equipment with bare hands, hold the equipment casing firmly with care to prevent parts from falling. Failure to comply may result in personal injuries.
- Store and transport the equipment based on the storage and transportation requirements. Failure to comply can result in equipment damage.
- Store and transport the product in environments free from water splashes, rain exposure, direct sunlight, strong electric and magnetic fields, and excessive vibration.
- Avoid storing the product for more than 3 months. When the product needs to be stored for an extended period, take more strict protection and necessary inspection.
- Before transportation, ensure the product is packed securely. For long-distance shipping, use airtight packaging.
- Always transport the product separately from any items or substances that could potentially damage or negatively affect its performance.

#### Installation



 The equipment must be operated only by professionals with electrical knowledge. Nonprofessionals are not allowed.



- Read through the guide and safety instructions before installation.
- Do not install the product in places with strong electric or magnetic fields.
- Before installation, ensure that the installation position has sufficient mechanical strength to support the weight of the device. Failure to comply will result in a mechanical danger.
- Do not wear loose clothes or accessories during installation. Failure to comply may result in an electric shock.
- When installing the equipment in a closed environment (such as a cabinet or casing), use a cooling device (such as a fan or air conditioner) to cool the environment down to the required temperature. Failure to comply may result in equipment over-temperature or a fire.
- Do not retrofit the equipment.
- Do not fiddle with the bolts used to fix equipment components or the bolts marked in red.
- When the equipment is installed in a cabinet or final assembly, a fireproof enclosure providing both electrical and mechanical protections must be provided. The IP rating must meet IEC standards and local laws and regulations.
- Before installing devices with strong electromagnetic interference, such as a transformer, install a shielding device for the equipment to prevent malfunction.
- Install the equipment onto flame retardant materials, such as metal. Keep the equipment away from combustible objects. Failure to comply will result in a fire.



- Cover the top of the equipment with a piece of cloth or paper during installation. This is to prevent unwanted objects such as metal chippings, oil, and water from falling into the equipment and causing faults. After the installation is completed, remove the protective guard. Failure to comply will block the vent and affect heat dissipation, causing overheat of the product.
- Resonance may occur when the equipment operating at a constant speed executes variable speed operations. In this case, install the vibration-proof rubber under the motor frame or use the vibration suppression function to reduce resonance.

### Wiring



- Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.
- Before wiring, disconnect all the power supplies of the equipment, Wait for at least the
  time designated on the equipment warning label before further operations because
  residual voltage still exists after power-off. Measure the direct voltage of the main circuit
  and ensure that the voltage is within the safety range. Failure to comply will result in an
  electric shock.
- Do not perform wiring, remove the equipment cover, or touch the circuit board with power ON. Failure to comply will result in an electric shock.
- Make sure that the equipment is reliably grounded. Failure to comply will result in an electric shock.



- Do not connect the input power supply to the output end of the equipment. Failure to comply will result in equipment damage or even a fire.
- When connecting a drive to the motor, check that the phase sequences of the drive and motor terminals are consistent to prevent reverse motor rotation.
- The cables used for wiring must have the appropriate size and shielding type. The cable shield needs to be grounded reliably at both ends.
- After wiring is done, check that all cables are connected properly and no screws, washers or exposed cables are left inside the equipment. Failure to comply may result in electric shock or equipment damage.



- During wiring, follow the proper electrostatic discharge (ESD) procedures, and wear an antistatic wrist strap. Failure to comply will result in damage to internal equipment circuits.
- Use shielded twisted pairs for the control circuit. Connect the shield to the grounding terminal of the equipment for grounding purpose. Failure to comply will result in equipment malfunction.

#### Power-on



- Before power-on, check that the equipment is installed properly with reliable wiring and the motor can be restarted.
- Check that the power supply meets equipment requirements before power-on to prevent equipment damage or a fire.
- Do not open the cabinet door or protective cover of the product, contact any wiring terminal of the product, or remove any part of the product at power-on. Failure to comply will result in an electric shock.



- Perform a trial run after wiring and parameter setting to ensure the equipment operates safely. Failure to comply may result in personal injuries or equipment damage.
- Before power-on, check that the rated voltage of the equipment is consistent with that of the power supply. Failure to comply may result in a fire.
- Before power-on, check that no one is near the equipment, motor, or other mechanical parts. Failure to comply may result in personal injuries or even death.

#### Operation



#### DANGER

- The equipment must be operated only by professionals. Failure to comply can result in death or personal injury.
- Do not touch any connecting terminals or disassemble any unit or component of the equipment during operation. Failure to comply can result in an electric shock.



- Do not touch the equipment casing, fan, or resistor with bare hands to feel the temperature. Failure to comply may result in personal injuries.
- Prevent metal or other objects from falling into the equipment during operation. Failure to comply may result in a fire or equipment damage.

#### Maintenance



#### DANGER

- Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.
- Do not maintain the equipment with power on. Failure to comply can result in an electric shock.
- Before maintenance, cut off all equipment power supplies and wait as specified on the product warning sign.
- When a PM motor rotates, its terminals will produce induced voltage even if the motor is powered off. Failure to comply can result in an electric shock.



 Perform daily and periodic inspection and maintenance for the equipment according to maintenance requirements and keep a maintenance record.

#### Repair



- Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed only by professionals.
- Do not maintain the equipment with power on. Failure to comply can result in electric shock.
- Before inspection and repair, cut off all equipment power supplies and wait as specified on the product warning sign.



- Require for repair services in accordance with the product warranty agreement.
- When the fuse is blown or the circuit breaker or earth leakage circuit breaker (ELCB) trips, adhere strictly to the waiting period indicated on the product warning label before restoring power or conducting any subsequent actions. Failure to comply may result in personal injuries, equipment damage or even death.
- When the equipment is faulty or damaged, the troubleshooting and repair work must be performed by professionals that follow the repair instructions, with repair records kept properly.
- Replace quick-wear parts of the equipment in according with the replacement instructions.
- Do not operate damaged equipment. Failure to comply may result in worse damage.
- After the equipment is replaced, perform wiring inspection and parameter settings again.

#### Disposal



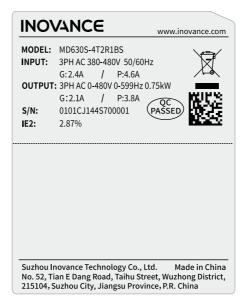
- Dispose of retired equipment in accordance with local regulations and standards. Failure to comply may result in property damage, personal injuries, or even death.
- Recycle retired equipment by observing industry waste disposal standards to avoid environmental pollution.

#### **Safety Labels**

To ensure safe operations, comply with safety signs on the device, and do not damage or remove the safety labels. The following table describes the safety signs.

| Safety Sign      | Description                                                                                                                                                                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>▲</b> ② 10min | <ul> <li>Before using the product, read the user guide and safety precautions carefully. Failure to comply will result in personnel injuries or death or product damage.</li> <li>Do not touch the terminals or remove the cover with power ON or within 10 min after power-off. Failure to comply will result in an electric shock.</li> </ul> |

## 1 Shipment Check


#### **Procedure**

1. Open the package and check whether the AC drive is intact.



If the AC drive or other accessories are damaged, do not operate or install the damaged device.

2. Check whether the AC drive model is consistent with that on the delivery order.



3. Record the model and serial No.

## 2 Power Supply Compatibility Check

Check and ensure that the voltage of the mains power is compatible with the voltage of the AC drive power supply.

The following table describes the AC drive models and power supply voltage.

Table 2–1 AC drive models and power supply voltage

| Struc | Туре     | AC Drive Model (Three-Phase 380 V to | Product No. |
|-------|----------|--------------------------------------|-------------|
| ture  |          | 480 V)                               |             |
| T1    | Standard | MD630S-4T1R5BS                       | 0101CQ45    |
|       | Bus type | MD630N-4T1R5BS                       | 0101CQ43    |
|       | Standard | MD630S-4T2R1BS                       | 0101CJ14    |
|       | Bus type | MD630N-4T2R1BS                       | 0101CJ26    |
|       | Standard | MD630S-4T3R8BS                       | 0101CJ15    |
|       | Bus type | MD630N-4T3R8BS                       | 0101CJ27    |
| T2    | Standard | MD630S-4T5R1BS                       | 0101CJ16    |
|       | Bus type | MD630N-4T5R1BS                       | 0101CJ28    |
|       | Standard | MD630S-4T7R2BS                       | 0101CJ17    |
|       | Bus type | MD630N-4T7R2BS                       | 0101CJ29    |
|       | Standard | MD630S-4T9R0BS                       | 0101CJ18    |
|       | Bus type | MD630N-4T9R0BS                       | 0101CJ30    |
| T3    | Standard | MD630S-4T013BS                       | 0101CJ19    |
|       | Bus type | MD630N-4T013BS                       | 0101CJ31    |
|       | Standard | MD630S-4T017BS                       | 0101CJ20    |
|       | Bus type | MD630N-4T017BS                       | 0101CJ32    |
| T4    | Standard | MD630S-4T025BS                       | 0101CJ21    |
|       | Bus type | MD630N-4T025BS                       | 0101CJ33    |
|       | Standard | MD630S-4T032BS                       | 0101CJ22    |
|       | Bus type | MD630N-4T032BS                       | 0101CJ34    |
| T5    | Standard | MD630S-4T037BS                       | 0101CJ23    |
|       | Bus type | MD630N-4T037BS                       | 0101CJ35    |
|       | Standard | MD630S-4T045BS                       | 0101CJ24    |
|       | Bus type | MD630N-4T045BS                       | 0101CJ36    |

## Note

MD630S indicates the standard model, and MD630N indicates the bus model.

## 3 Unpacking and Handling

## Unpacking

- 1. Open the external box to take out the inner box, as shown in pictures **1**, **2**, **3**.
- 2. Open the inner box, as shown in pictures **4** and **5**.
- 3. Take out the expanded polyethylene foam and the AC drive, as shown in picture  ${\bf 6}$  .

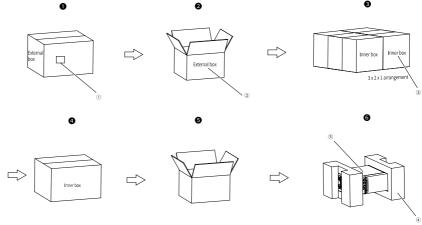



Figure 3-1 AC drive unpacking Table 3-1 Unpacking list

| No. | Name                       |
|-----|----------------------------|
| 1)  | Label                      |
| 2   | External box               |
| 3   | Inner box                  |
| 4   | Expanded polyethylene foam |
| (S) | AC drive                   |

#### Storage



Store and transport the equipment as required to prevent damage.

• The AC drive must be stored in a clean and dry room, where the temperature ranges from -40°C and +60°C and temperature change rate is smaller than 1°C/min.

- Avoid transporting the equipment in environments such as water splashing, rain, direct sunlight, strong electric field, strong magnetic field, and strong vibration.
- Do not expose the drive to the environment with moisture, high temperature, or strong sunlight for a long time.
- If the AC drive needs to be stored for a long period of time, cover it or take other appropriate measures to keep it from contamination and environmental influences.
- Try to store the product with the original packing carton of Inovance.
- Avoid storing the product for more than 3 months. When the product needs to be stored for an extended period, take more strict protection and necessary inspection.
- The electrolytic capacitor will deteriorate after long-term storage. Therefore, switch on
  the AC drive once for at least 5 hours every 6 months. Increase the input voltage slowly
  to the rated value by using a voltage regulator. Contact Inovance for technical support if
  necessary.
- Pack the drive strictly before transportation. Use a sealed box for long-distance transportation.
- Never transport the drive with other equipment or materials that may harm or have negative impacts on the drive.

## **Transportation**



- Large-scale or heavy equipment must be transported by qualified professionals using specialized hoisting equipment. Failure to comply may result in personal injuries or equipment damage.
- Before hoisting the equipment, ensure the components such as the front cover and terminal block are secured firmly with screws. Loosely-connected components may fall off and result in personal injuries or equipment damage.
- Never stand or stay below the equipment when the equipment is being hoisted by the hoisting equipment.
- When hoisting the equipment with a steel rope, ensure the equipment is hoisted at
  a constant speed without suffering from vibration or shock. Do not turn the
  equipment over or let the equipment stay hanging in the air. Failure to comply
  may result in personal injuries or equipment damage.
- When carrying the equipment with bare hands, hold the equipment casing firmly with care to prevent parts from falling. Failure to comply may result in personal injuries.
- Handle the equipment with care during transportation and mind your steps to prevent personal injuries or equipment damage.

## 4 AC Drive Installation

## 4.1 Pre-installation Check

Check the following items before installation:

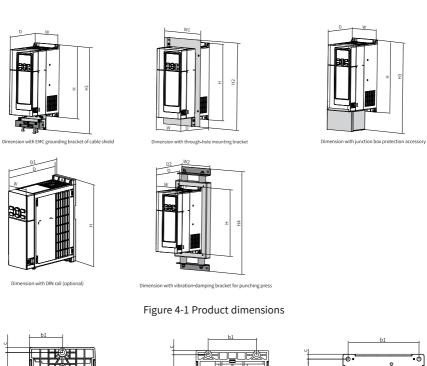

- Check the installation environment, installation clearance, and Installation orientation.
- Prepare the installation tools and accessories.
- Packaging confirmation, unpacking inspection and handling to meet the installation requirements.
- Check the following items before installation.

Table 4-1 Checklist before installation

| No. | Item                                                                                                                                                                               | Checked |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1   | The installation position is mechanically strong enough to bear the weight of the AC drive.                                                                                        |         |
| 2   | The load-bearing capacity of the ground and the environment meet the installation requirements.                                                                                    |         |
| 3   | Sufficient clearance is reserved for heat dissipation, including for heat dissipation of other devices in the cabinet.                                                             |         |
| 4   | The mounting bracket (if needed) is made of flame-retardant material.                                                                                                              |         |
| 5   | If the application site is exposed to metal powder, install the AC drive in a completely enclosed cabinet that has enough space to isolate the AC drive from metal powder.         |         |
| 6   | Before installing the AC drive, install the bottom mounting bracket in the cabinet and guide rails (optional), and prepare mounting beams with holes reserved to fix the AC drive. |         |
| 7   | Keep flammables or explosives away from the drive.                                                                                                                                 |         |

## 4.2 Dimensions

This section describes the size specifications of different models with different options (the following illustrations are based on the T4 model).



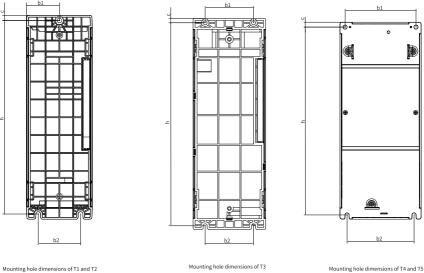



Figure 4-2 Mounting hole position

Table 4–2 Product dimensions

|                   | Dimensi | on                                                                     |                  | Product dime  | rive Structure   | (kW)          |                 |
|-------------------|---------|------------------------------------------------------------------------|------------------|---------------|------------------|---------------|-----------------|
|                   |         |                                                                        | T1 (0.37 to 1.5) | T2 (2.2 to 4) | T3 (5.5 to 7.5)  | T4 (11 to 15) | T5 (18.5 to 22) |
| Outline<br>dimen  | Width   | W (for only AC drive)                                                  | 70 (2.76)        | 75 (2.95)     | 90 (3.54)        | 125 (4.92)    | 165 (6.50)      |
| sions<br>mm (in.) |         | W1 (with<br>through-hole<br>mounting<br>bracket)                       | /                | /             | /                | 174.7 (6.88)  | 214.7 (8.45)    |
|                   |         | W2 (with<br>vibration-<br>damping<br>bracket for<br>punching<br>press) | 110 (4.33)       | 110 (4.33)    | 110 (4.33)       | 175 (6.89)    | 175 (6.89)      |
|                   | Depth   | D (for only AC drive)                                                  | 169.5 (6.67)     | 169.5 (6.67)  | 190 (7.48)       | 186 (7.32)    | 200 (7.87)      |
|                   |         | D (with DIN rail (optional))                                           | 177.5 (6.99)     | 177.5 (6.99)  | /                | /             | /               |
|                   |         | D2 (with<br>vibration-<br>damping<br>bracket for<br>punching<br>press) | 207.5 (8.17)     | 207.5 (8.17)  | 228 (8.98)       | 226 (8.90)    | 240 (9.45)      |
|                   | Height  | H (for only AC drive)                                                  | 217 (8.54)       | 217 (8.54)    | 262 (10.31)      | 303 (11.93)   | 330 (12.99)     |
|                   |         | H1 (with EMC<br>grounding<br>bracket of<br>cable shield)               | 248 (9.76)       | 248 (9.76)    | 303.5<br>(11.95) | 370 (14.57)   | 415 (16.34)     |
|                   |         | H2 (with<br>through-hole<br>mounting<br>bracket)                       | /                | /             | /                | 332 (13.07)   | 370 (14.57)     |
|                   |         | H3 (with<br>junction box<br>protection<br>accessory)                   | 272.3 (10.72)    | 272.3 (10.72) | 323 (12.72)      | 403 (15.87)   | 420 (16.54)     |
|                   |         | H4 (with<br>vibration-<br>damping<br>bracket for<br>punching<br>press) | 415 (16.34)      | 415 (16.34)   | 415 (16.34)      | 466 (18.35)   | 466 (18.35)     |

| Dimension    |               | Drive Structure (kW) |               |             |               |                 |
|--------------|---------------|----------------------|---------------|-------------|---------------|-----------------|
|              |               |                      | T2 (2.2 to 4) | T3 (5.5 to  | T4 (11 to 15) | T5 (18.5 to 22) |
|              |               |                      |               | 7.5)        |               |                 |
| Mounting     | b1            | 35 (1.38)            | 37.5 (1.48)   | 60 (2.36)   | 109 (4.29)    | 140 (5.51)      |
| hole         | b2            | 45 (1.77)            | 45 (1.77)     | 60 (2.36)   | 103 (4.06)    | 140 (5.51)      |
| dimension    | С             | 5.5 (0.22)           | 5.5 (0.22)    | 5.5 (0.22)  | 7.5 (0.30)    | 8 (0.31)        |
| mm (in.)     | h             | 206 (8.15)           | 206 (8.15)    | 252 (9.92)  | 289 (11.38)   | 314 (12.36)     |
| Hole diame   | Hole diameter |                      | ф5 (0.20)     | ф5 (0.20)   | ф6 (0.24)     | ф6 (0.24)       |
| mm (in.)     |               |                      |               |             |               |                 |
| Tightening t | torque        | 1.2                  | 1.2           | 1.2         | 2.8           | 2.8             |
| N·m          |               |                      |               |             |               |                 |
| Weight       |               | 1.25 (2.76)          | 1.36 (3.00)   | 2.08 (4.59) | 4.01 (8.84)   | 5.94 (13.10)    |
| kg (lb)      |               |                      |               |             |               |                 |

#### 4.3 Installation Clearance

#### Note

- Before installing the AC drive in the cabinet, design the cabinet to ensure sufficient clearances for installation and heat dissipation. Take the following factors into consideration:
- When multiple AC drives are required to work together, install them side by side. Keep their tops level with each other, especially for those of different sizes.
- In applications requiring AC drives to be installed side by side, install an air guide
  plate to prevent overtemperature/overload fault that may occur due to heat
  dissipated from the lower row to the upper row.
- Reserve sufficient clearance according to the power rating of the AC drive. The
  recommended installation methods of the MD600 include single-layer installation
  and multi-layer installation.

## Installation Clearance for A Single Device

When only a single device is installed, reserve sufficient clearance around the device. The following figure shows the minimum clearance.

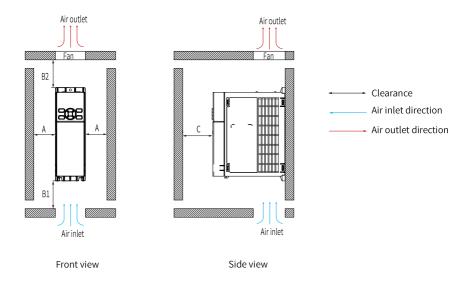



Figure 4-3 Clearance for installation of a single device

Table 4–3 Clearance for installation of a single device

| Power Rating | Clearance (mm) |     |     |    |  |
|--------------|----------------|-----|-----|----|--|
| (kW)         | A              | B1  | B2  | С  |  |
| 0.37 to 2.2  | 20             | 100 | 100 | 40 |  |
| 3 to 7.5     | 30             | 100 | 100 | 40 |  |
| 11 to 15     | 30             | 150 | 150 | 40 |  |
| 18.5 to 22   | 30             | 200 | 150 | 40 |  |

## **Installation Clearance for Multiple Devices**

When multiple devices are installed side by side, reserve sufficient clearance around the devices. The following figure shows the minimum clearance.

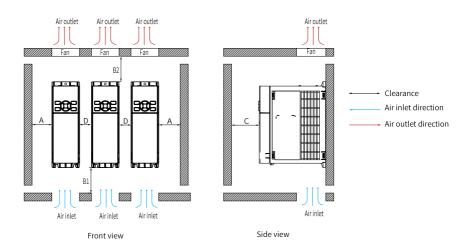



Table 4-4 Clearance for installation of multiple devices

| Power          | Clearance (mm) |     |     |    |                           |  |
|----------------|----------------|-----|-----|----|---------------------------|--|
| Rating         | А              | B1  | B2  | С  | D                         |  |
| (kW)           |                |     |     |    |                           |  |
| 0.37 to<br>2.2 | 20             | 100 | 100 | 40 | 30 (ambient temp. 50°C)   |  |
|                |                |     |     |    | 0 (ambient temp.<br>40°C) |  |
| 3 to 7.5       | 30             | 100 | 100 | 40 | 30 (ambient temp. 50°C)   |  |
|                |                |     |     |    | 0 (ambient temp.<br>40°C) |  |
| 11 to 15       | 30             | 150 | 150 | 40 | 30 (ambient temp. 50°C)   |  |
|                |                |     |     |    | 0 (ambient temp.<br>40°C) |  |
| 18.5 to<br>22  | 30             | 200 | 150 | 40 | 30 (ambient temp. 50°C)   |  |
|                |                |     |     |    | 0 (ambient temp.<br>40°C) |  |

When multiple devices are installed at multiple layers, reserve sufficient clearance around the device. The following figure shows the minimum clearance.

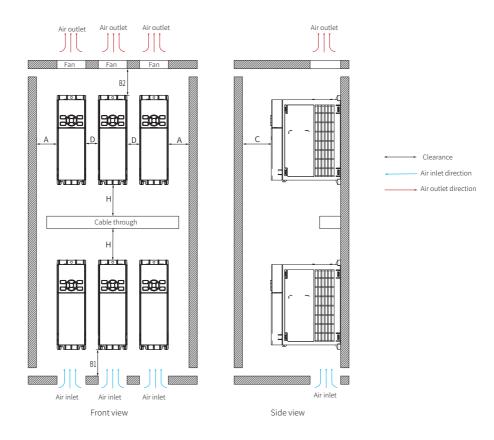



Figure 4-4 Clearance for installation of multiple devices at different layers

Table 4–5 Clearance for installation of multiple devices at different layers

| Power          | Clearance (mm) |     |     |    |                           |     |
|----------------|----------------|-----|-----|----|---------------------------|-----|
| Rating         | А              | B1  | B2  | С  | D                         | Н   |
| (kW)           |                |     |     |    |                           |     |
| 0.37 to<br>2.2 | 20             | 100 | 100 | 40 | 30 (ambient temp. 50°C)   | 125 |
|                |                |     |     |    | 0 (ambient temp.<br>40°C) |     |
| 3 to 7.5       | 30             | 100 | 100 | 40 | 30 (ambient temp. 50°C)   | 125 |
|                |                |     |     |    | 0 (ambient temp.<br>40°C) |     |

| Power         | Clearance (mm) |     |     |    |                           |     |
|---------------|----------------|-----|-----|----|---------------------------|-----|
| Rating (kW)   | А              | B1  | B2  | С  | D                         | Н   |
| 11 to 15      | 30             | 150 | 150 | 40 | 30 (ambient temp. 50°C)   | 150 |
|               |                |     |     |    | 0 (ambient temp.<br>40°C) |     |
| 18.5 to<br>22 | 30             | 200 | 150 | 40 | 30 (ambient temp. 50°C)   | 150 |
|               |                |     |     |    | 0 (ambient temp.<br>40°C) |     |

## 4.4 Screw-based Installation

- 1. For T1 to T2 models, install the AC drive as the following measures:
  - a. Use a Phillips screwdriver to secure the M4 cross recessed pan head SEMS screw on the upper side of the AC drive, as shown in figure ①
  - b. Repeat the previous step to fix the M4 cross recessed pan head SEMS screws on the lower left and lower right side of the AC drive, as shown in ② and ③.

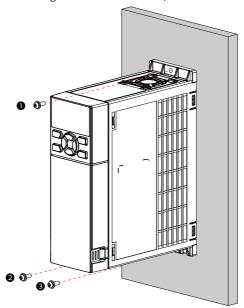
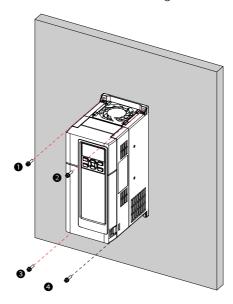




Figure 4-5 Installing through screws

2. For T3 to T5 models, install the AC drive as the following measures:

- a. Use a Phillips screwdriver to secure the screws on the upper right and upper left side of the AC drive, as shown in ① and ②. T3 screw: M4 cross recessed pan head SEMS screw; T4/T5 screw: M5 cross recessed hexagon head SEMS screw.
- b. Repeat the previous step to fix the screws on the lower left and lower right side of the AC drive, as shown in ③ and ④. T3 screw: M4 cross recessed pan head SEMS screw; T4/T5 screw: M5 cross recessed hexagon head SEMS screw.



## Note

For torque details, refer to MD630 Series General Purpose AC Drive User Guide.

## 4.5 Through-hole Installation

For T4 to T5 models, install the through-hole mounting bracket as the following measures:

#### Procedure

- 1. Remove the M4 screws provided with the bracket to divide the bracket into two parts, and install the left bracket into the AC drive, as shown figure 1 in Figure 1.
- 2. Tighten the two M4×16 cross recessed pan head SEMS screws (M5×20 cross outer hexagon screws for T5 model) on the left side of the machine with a Phillips screw-driver, as shown in Figure 2 in Figure 1.
- 3. Insert the right bracket into the AC drive, ensuring it is correctly aligned with the left side bracket using locating pegs. Tighten the two M4×16 cross recessed pan head SEMS screws (M5×20 cross outer hexagon screws for T5 model) on the left side of the machine with a Phillips screwdriver. Fasten the left and right brackets with two M4×10 cross recessed pan head SEMS screws. See Figure ②.
- 4. Insert the AC drive with the bracket tilted into the fixed hole of the control cabinet, as shown in the figure **3**.
- 5. Push the AC drive up so that the bracket is flat against the mounting surface of the control cabinet. Tighten the four M5×20 cross recessed hexagon head SEMS screws around the bracket with a Phillips screwdriver, as shown in figure 4.

#### Note

- Discard the removed M4 $\times$ 10 screws and replace them with the supplied M4 $\times$ 10 screws.
- Screw torque: M4: 1.2 N⋅m, M5: 2.8 N⋅m.

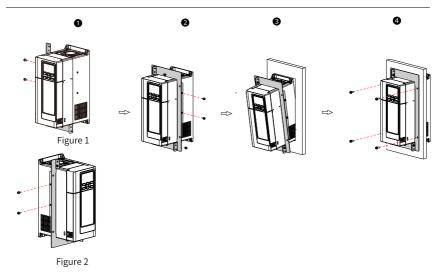



Figure 4-6 Through-hole mounting (T4 to T5 models)

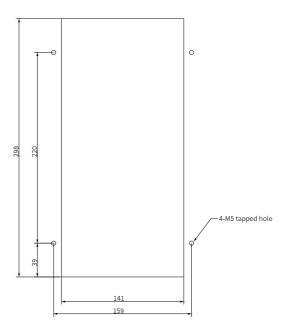



Figure 4-7 Recommended mounting hole dimensions for T4 model cabinet (mm)

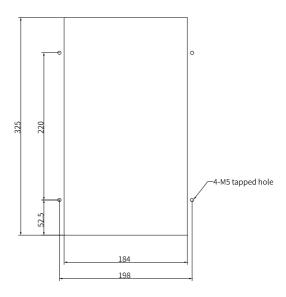



Figure 4-8 Recommended mounting hole dimensions for T5 model cabinet (mm)

## 4.6 Installing AC Drive to DIN Rail

For T1 to T1 models, install the DIN rail as the following measures:

#### Procedure

- 1. Install the optional plastic base plate of the DIN rail into the bottom of the product with PA4×12 self-tapping screws, as shown in Figure ①.
- 2. Snap the upper snap-fit joint of the plastic base plate into the guide rail, and then tap the bottom of the product with your hand in the direction of the arrow. Then, snap the lower snap-fit joint of the plastic base plate into the guide rail, as shown in Figure 2.

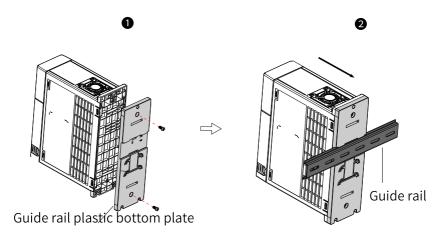



Figure 4-9 Guide rail mounting

## Note

- Self-tapping screws are shipped with the rail brackets.
- Screw torques: 1.2 N·m

## 4.7 Post-installation Check

After the installation is done, check the following items.

Table 4–6 Post-installation checklist

| No. | ltem                                                                                                                                                                                                                                     | Checked |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1   | The ceiling height meets the minimum requirements for smooth ventilation. The air inlet and air outlet are free of obstruction and have sufficient space. Sufficient space is reserved for safe passing when the cabinet door is opened. |         |
| 2   | All contact protection devices (such as the guard plate) inside and outside the cabinet are installed.                                                                                                                                   |         |

## 5 AC Drive Wiring

## 5.1 Inspection Before Wiring

Check the following items before wiring.

Table 5-1 Pre-wiring inspection checklist

| No. | ltem                                                                                               | Passed |
|-----|----------------------------------------------------------------------------------------------------|--------|
| 1   | Cables used during wiring comply with the requirements on the cross sectional area and the shield. |        |
| 2   | The device and the drive are grounded properly.                                                    |        |
| 3   | Proper electrostatic discharge (ESD) procedures are followed and antistatic wrist straps are worn. |        |

## 5.2 Cable Preparation

#### Cables for T1 to T3 series

• Input/Output cable

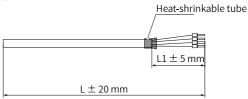



Figure 5-1 T1 to T3 input and output cables

• DC bus input cables

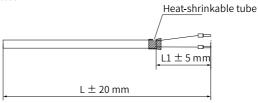



Figure 5-2 DC bus input cables

• Braking cable



Figure 5-3 Braking cable

## Cables for T4 to T5 series

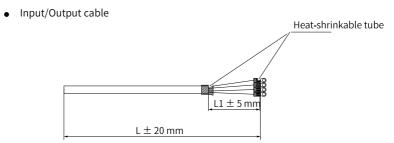



Figure 5-4 T4 to T5 input and output cables

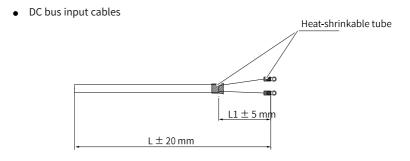



Figure 5-5 DC bus input cables

• Braking cable

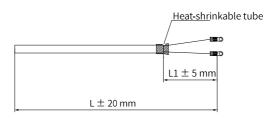



Figure 5-6 Braking cable

## Note

- The total power cable length (L) and stripping length (L1) are adjusted according to the actual working conditions on site.
- The power ring tongue terminals are heat-shrink tubing with suitable heat-shrink sleeves.
- The control cables can be customized according to actual demand.

## 5.3 Power Cable Connection

Before connecting power cables, disable the power supply input. Take the following steps.

- Remove upper access cover of the AC drive in the direction indicated by the arrow, as shown in figure 1.
- 2. Remove the power terminal protection board in the direction indicated by the arrow, as shown in figure 2.
- Connect the cables to the the input terminals (R, S, T) and output terminals (U, V, W) of AC drive. If an external braking resistor is required, connect the cables to the BR and + terminals of the AC drive. Secure the cables with the recommended torque.

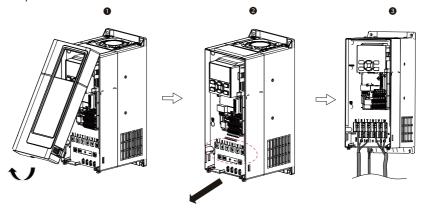



Figure 5-7 Connecting the power cables

## 5.4 Connecting Control Cable

Before connecting the control cables, disable the power supply input. Take the following steps.

1. Connecting control cable

- a. Remove the front cover in the direction indicated by the arrow, as shown in figure  $\P$ .
- b. Locate the terminals that need to access. Insert the cables into the terminals and confirm whether the connection is secure, as shown in Figure 2.
  It is recommended to use cable crimping terminals for secure connections.
  However, if wire cables are used instead, an additional step is required: pressing the terminal button as shown in the figure 3.

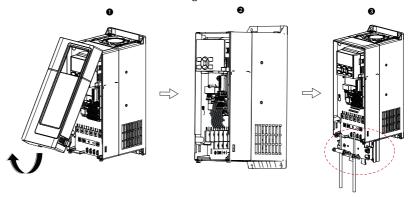



Figure 5-8 Connecting the control cable

## 2. I/O connection

This section takes MD630S standard model and MD630N bus model as examples to illustrate the IO connection.

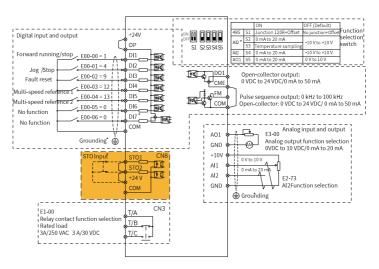



Figure 5-9 IO connection (MD630S)

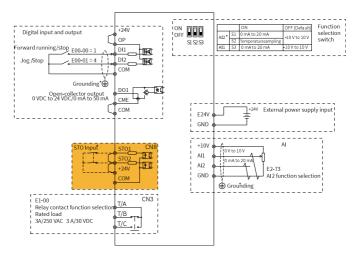



Figure 5-10 IO connection (MD630N)

#### 3. Bus connection

This section takes EtherCAT as examples.

EtherCAT cables are connected to the network ports (IN and OUT) equipped with the metal shield. The procedures are as follows.

- a. Disable system power supply.
- b. Connect the EtherCAT master and EtherCAT slave with shielded network cables.

- c. Ensure the connection other than communication, such as the main circuit connection and control circuit connection are correct, and then power on the system.
- d. The next section takes EtherCAT linear connection and redundancy ring typology as examples.

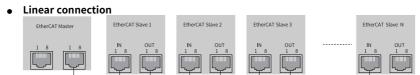



Figure 5-11 Linear connection

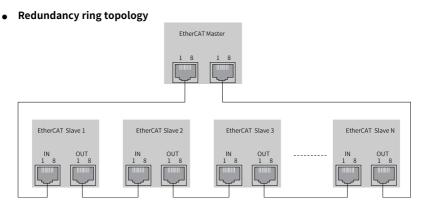



Figure 5-12 Redundant ring topology

The EtherCAT communication cable must be Ethernet Category 5 (100BASE-T $\times$ ) network cable or high-strength shielded network cable. The cables used for the AC drive must also be shielded network cable, with length no longer than 100 m. The shielded network cable enhances the anti-interference capacity of the system.

## 5.5 Inspection After Wiring

After wiring is completed, check the following items and tick compliant items.

|   | No. | ltem                                                                      | Passed |
|---|-----|---------------------------------------------------------------------------|--------|
| 1 |     | The power supply input cables are connected to the R, S, and T terminals. |        |
| 2 |     | The motor input cables are connected to the U, V, and W terminals.        |        |
| 3 |     | The dimensions of the main circuit cables meet the requirements.          |        |

| No. | ltem                                                                                                                                                                                                                                                        | Passed |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 4   | Check that the heat-shrinkable tubes have been applied to the cable lug copper tubes and fully cover the cable conductor of the main circuit.                                                                                                               |        |
| 5   | The motor output cable does not exceed 50 m. Otherwise, the carrier frequency needs to be reduced through F2-50.                                                                                                                                            |        |
| 6   | The ground cables are connected correctly.                                                                                                                                                                                                                  |        |
| 7   | The output terminals and control signal terminals are securely fastened.                                                                                                                                                                                    |        |
| 8   | The braking resistor and braking unit are wired properly. The power of braking resistor and resistance are in the proper range.                                                                                                                             |        |
| 9   | The control circuit signal cables are shielded twisted pair cables.                                                                                                                                                                                         |        |
| 10  | The control circuit cables are routed separately from the main circuit power cables (the control circuit cables should not be wound together with the main circuit power cables). If it is not possible to route separately, choose the cross-wire routing. |        |
| 11  | There are no screws, gaskets, or exposed cables left inside the product.                                                                                                                                                                                    |        |

## 6 Quick Operation

## 6.1 Operating Panel

#### 6.1.1 Overview

The operating panel of the MD630 includes LED and keys, with the following functions:

- Parameter display: The LED displays parameters, various monitoring data, and fault codes. The indicators indicate the current status and the unit of parameters.
- Parameter setting: In each level of menu, the data bit you are operating on will flash.
   You can use the up and down keys to increase or decrease numerical values, and the left and right keys to switch between the bits you are operating on.
- Status monitoring: When the AC drive is stopped or running, the operating panel displays the different status of the AC drive according to the parameter settings (A6-03 to A6-05).

## 6.1.2 Components

The operating panel is shown in the following figure, including the status display area, parameter display area, and key area.



Figure 6-1 Operating panel

Table 6–1 Description of the operating panel

| No. | Name                      | Description                                                                                                                       |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1)  | Status display area       | It displays the running state of the AC drive. For details, see "Table 6–2 Status description" on page 36.                        |
| 2   | Parameter<br>display area | It displays the parameters of the AC drive. For details, see "6.1.3 Display on the Operating Panel" on page 37.                   |
| 3   | Units display<br>area     | It displays the unit of the current data.                                                                                         |
| 4   | Key area                  | For details, see "Table 6–3 Key descriptions" on page 37.                                                                         |
| (5) | Connector<br>model        | Steady ON: Displays the connector parameters.                                                                                     |
| 6   | Minus sign                | Steady ON: Indicates that the current parameter is a negative value or indicates the opposite direction of the content displayed. |

Table 6–2 Status description

| Sign       | Name           | Function                     | Status                                                                                                                                       |
|------------|----------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|            |                | Description                  |                                                                                                                                              |
| FWD        | FWD            | Forward run                  | Steady on: The AC drive is running forwardly or the forward running mode is set.                                                             |
| REV        | REV            | Reverse run                  | Steady on: The AC drive is running reversely or the reverse running mode is set.                                                             |
|            | Local/remote   | Local/remote connection mode | Off: local control (operating panel) Steady on: Terminal control Flashing: Communication control Flashing quickly: User-defined control mode |
| Т          | Torque control | Torque control<br>mode       | Off: Speed control mode<br>Steady on: Torque control mode                                                                                    |
| 1          | Alarm          | Alarm or fault               | Steady on: A fault or an alarm occurs.                                                                                                       |
| $\Diamond$ | Run            | Running status               | Off: The AC drive does not run. Steady on: The AC drive is running.                                                                          |
|            | Minus sign     | Value sign                   | Steady ON: Indicates that the current parameter is a negative value or indicates the opposite direction of the content displayed.            |
| Ф          | Connector      | Connector model              | Steady ON: Displays connector parameters.                                                                                                    |

Table 6–3 Key descriptions

| Key      | Name          | Function                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5)      | Menu/Back key | Return to the last interface or undo the operation. Switch the menu. Long press the key to enter the multi-function menu.                                                                                                                                                                                                                                                                                                 |
|          | OK key        | Press the key to enter the settings interface or confirm settings.                                                                                                                                                                                                                                                                                                                                                        |
|          | Up key        | • Increase the current parameter value.                                                                                                                                                                                                                                                                                                                                                                                   |
|          | Down key      | Decrease the current parameter value.                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>•</u> | SHIFT key     | <ul> <li>In the monitoring interface, press the key to switch among monitoring objects.</li> <li>In the parameter interface, press the key to switch the data bit.</li> <li>In the multi-function menu interface, press the key to switch among the basic menu, user menu, calibration menu, and error record menu.</li> <li>In the error record menu, press the key to switch among historical fault records.</li> </ul> |
| •        | Operation key | • In the operating panel control mode, press the key to operate the drive.                                                                                                                                                                                                                                                                                                                                                |
|          | Stop key      | When the drive is running, press the key to stop the drive.      When the drive is in the faulty state, press the key to perform a reset operation.                                                                                                                                                                                                                                                                       |

# 6.1.3 Display on the Operating Panel

The main display area of the operating panel consists of five 8-segment LEDs, which display various monitoring data such as the set frequency and output frequency, as well as the current operating state of the AC drive.

Table 6–4 Panel display

| Category                   | Operating Panel Display | Meaning                                           |
|----------------------------|-------------------------|---------------------------------------------------|
| Status display             | 8888                    | AC drive initialized                              |
|                            | 88888                   | The AC drive is in the auto-tuning state.         |
|                            | 8888                    | AC drive busy                                     |
|                            | 88888                   | The AC drive is in the auto-<br>inspection state. |
| Parameter<br>display       | 8888                    | Parameter group F0                                |
|                            | 88888                   | A0-10                                             |
| Display of connectors      | 88888                   | Connector L2202                                   |
| Parameter value<br>display | 88888                   | Parameter value 321.5 (Decimal)                   |
|                            | 8.8888                  | Parameter value 0x000E<br>(Hexadecimal)           |

| Category      | Operating Panel Display | Meaning                 |
|---------------|-------------------------|-------------------------|
| Fault display | 88888                   | Fault code E027.1       |
|               | 88888                   | Warning code A028.1     |
|               | 88888                   | Minor fault code L028.3 |
|               | 88888                   | Prompt code N028.2      |

## 6.1.4 Parameter View and Setting

The LED operating panel adopts a three-level menu to perform operations such as parameter setting. It consists of the following menus:

- Level I: Parameter group
- Level II: Parameter
- Level III: Parameter value

After entering each level of the menu, when the display bit flashes, you can press to modify the value of the bit. You can also switch to other display bits by



In the level 3 menu state, if the parameter is displayed without any blinking bit, this parameter cannot be modified. This may be caused by the following:

- The parameter is an unmodifiable parameter, such as the product type, actual measurement value, and operation log.
- The parameter is unmodifiable when the servo drive is running. In this case, you can modify the parameter after stopping the servo drive.

You can return to Level II menu from Level III menu by pressing difference between pressing the two keys is:

, the system saves the parameter setting first, and then goes After you press back to Level II menu and shifts to the next parameter.

 Pressing returns to level-2 menu corresponding to the current parameter without saving the current parameter setting.

Here is the example of setting b5-01 (Digital setting of main frequency) to 30.00 Hz. The basic setting process through the operating panel is as follows.

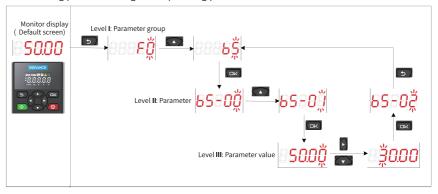



Figure 6-2 Parameter setting

# 6.2 Commissioning preparation

# 6.2.1 Motor Type

Check the motor type through motor nameplate. In some cases, the motor type is not indicated on the nameplate. You can confirm the motor type by using the following two methods:

- The asynchronous motor has slip, and the synchronous motor has no slip. The rated slip
  of the motor = rated frequency x 60 ÷ rated pole pairs rated speed. If the calculation
  result is not zero, the motor is asynchronous motor.
- Short the UVW cable of the motor. The motor with obvious resistance when it is
  wobbled manually is synchronous motor. Otherwise, the motor type is asynchronous
  motor. This method can be used to determine whether the reluctance motor is magnet
  assisted synchronous reluctance motor. The resistance of the reluctance motor without
  assisted magnet will not increase.

# 6.2.2 Select Motor Parameter Group 1 on Nameplate

Some motors may have multiple groups of parameters on the nameplates. As shown in the following figure, it is recommended to select the motor parameter group 1 input to the AC drive as the rated parameters. The analysis is as follows:

| duty type | n (/min) | P (kW) | U (V) | I (A) | f (Hz) | cos/phi |
|-----------|----------|--------|-------|-------|--------|---------|
| S1        | 650      | 200    | 414   | 342   | 22.3   | 0.89    |
| S1        | 765      | 200    | 480   | 296   | 26     | 0.88    |
| S1        | 1950     | 200    | 480   | 300   | 66.5   | 0.87    |
| S1        | 3000     | 130    | 480   | 192   | 101.5  | 0.87    |

V/f is directly proportional to the flux. The U/f of motor parameter group 1 and motor parameter group 2 is about 18.5, which is the rated flux coefficient. The V/f of motor parameter group 3 = 7.2, which is the field-weakening parameter. The V/f of motor parameter group 4 = 4.7, which is the field-weakening parameter. The rated motor parameters in the AC drive cannot be used to set the field-weakening parameters. Selecting motor parameter group 3 or 4 will result in insufficient motor output. Therefore, only group 1/2 can be selected. If the motor parameter group 2 is selected, the maximum output force at low frequency cannot meet the design requirements; therefore the motor parameter group 1 shall be selected. For the AC drive, the maximum output voltage is related to the bus voltage and is not related to the rated motor voltage. Setting the motor group 1 parameters will not result in insufficient output voltage.

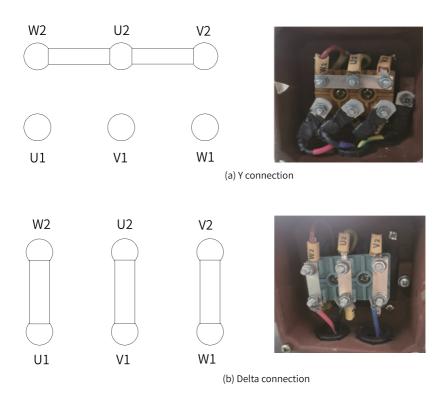
## 6.2.3 Collect Data of AC Drive and Motor

Confirm the following information before commissioning.

#### Collect motor data

See the information on the motor nameplate: rated power, rated voltage, rated current, rated frequency, and rated speed, as well as motor type.

The motor parameters listed on the nameplate are crucial for successful parameter auto-tuning. Note that the settings for asynchronous and synchronous motors differ. Before setting the motor parameters, confirm the motor type, as shown in "6.2.1 Motor Type" on page 40.


# Collect AC drive data

See the information on the AC drive nameplate: product name, model, power, voltage class, and output current to ensure the IO range and power rating of AC drive match those of the motor.

#### Check motor connection mode

Check whether the motor connection method (Y-type or delta type) is consistent with the motor nameplate. The wrong motor connection method will result in poor motor output force and high output current without carrying the load.

Figure 6-3 Motor connection mode



# 6.2.4 Check Cables Connecting AC drive Motor

Connect the cables between the AC drive and the motor. Before powering on and commissioning the system, ensure that the preparation for power-on has been completed, and check each item in the table.

Table 6-5 Steps

| Items | Operation                                                                                                                                                                                      | Passed | Completed |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1     | The power input of the main circuit is correctly connected based on terminal labels (R, S, and T).                                                                                             |        |           |
| 2     | The main circuit output terminals (U, V, and W) and motor cables (U, V, and W) are connected in the same phase sequence.                                                                       |        |           |
| 3     | The power input terminals (R, S, and T) and output terminals (U, V, and W) of the main circuit are correctly connected. For example, the power input cable is not connected to the output end. |        |           |
| 4     | The AC drive and motor are reliably grounded.                                                                                                                                                  |        |           |

| Items | Operation                                                                 | Passed | Completed |
|-------|---------------------------------------------------------------------------|--------|-----------|
| 5     | The encoder is correctly connected, and the shield is properly processed. |        |           |
| 6     | Connect the power supply of the auxiliary circuit properly.               |        |           |
| 7     | Communication cables are correctly connected.                             |        |           |
| 8     | External interfaces such as I/O interfaces are correctly connected.       |        |           |

# 6.2.5 Powering on the AC Drive

After the wiring inspection, connect the main circuit R, S, T to the three-phase AC power supply. Before checking the parameters of the AC drive, ensure it is normally powered.

#### 6.2.6 AC Drive Model Check

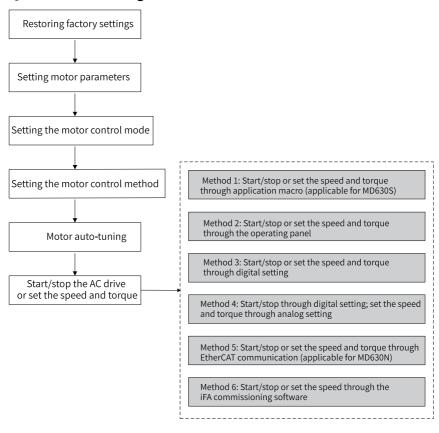
Check the equipment information according to the product nameplate. See the following table for inspection parameters.

| Parameter | Parameter Name           | Description                                                                                   |
|-----------|--------------------------|-----------------------------------------------------------------------------------------------|
| A2-21     | Device type              | 1: MD630S (485 standard type + STO)<br>4: MD630N (Bus type + STO)                             |
| A3-02     | Rated AC drive power     | This parameter displays the rated AC drive power.                                             |
| A3-03     | AC drive rated current   | This parameter displays the rated AC drive current.                                           |
| A3-04     | Rated AC drive voltage   | This parameter displays the rated AC drive voltage.                                           |
| A3-05     | Maximum AC drive current | Sets the maximum current of the AC drive. The base value is the rated current of the AC drive |

Table 6-6 Related Parameters

If the product information such as the rated power, rated voltage, and rated current is inconsistent with that on the nameplate, contact the service personnel for technical support.

# 6.2.7 Software Version Check


If you need to use a specific software version for commissioning, check the software version by consulting the following parameters after software update.

| Item  | Parameter Name               | Display Range |
|-------|------------------------------|---------------|
| A2-22 | Performance software version | 0.0 to 655.35 |
| A2-23 | Function software version    | 0.0 to 655.35 |

| Item  | Parameter Name                   | Display Range |  |
|-------|----------------------------------|---------------|--|
| A2-24 | Performance software sub-version | 0.0 to 655.35 |  |
| A2-25 | Function software sub-version    | 0.0 to 655.35 |  |

# 6.3 Quick Commissioning

# 6.3.1 Quick Commissioning Flowchart



# 6.3.2 Restore Factory Settings

Restoring factory settings refers to resetting the parameters to the factory default values. Conduct this operation before the first-time commissioning of the AC drive.

1. Start restoring factory settings: Set parameter initialization through A0-00.

If the motor parameters have not been set or if the motor parameters need to be reset as well, set A0-00 to 3 [Restore parameters (including motor parameters) to default settings].

If the motor parameters have been set or if the motor parameters do not need to be reset, set A0-00 to 1 [Restore parameters (excluding motor parameters) to default settings].

2. Restoring factory settings completed: Wait for the value of A0-00 to become 0. In this case, the settings are restored to default. Other commissioning procedures can continue.

Table 6–7 Restoring factory parameters

| Param.  | Parameter       | Default   | Value Range                | Descriptions                                       |
|---------|-----------------|-----------|----------------------------|----------------------------------------------------|
| i urum. | Name            | Delaate   | value nange                | Descriptions                                       |
| A0-00   | Parameter       | 0: No     | 0: No operation            | 0: No operation                                    |
| 710 00  | initialization  | operation | 1: Restore parameters      | 1: Restore parameters (excluding motor             |
|         | iiiidati2atioii | орегасіон | (excluding motor           | parameters) to factory settings. AC drive          |
|         |                 |           | parameters) to default     | parameters except factory parameters, motor        |
|         |                 |           | settings                   | parameters, and records are restored to default    |
|         |                 |           | 2: Clear records           | settings.                                          |
|         |                 |           | 3: Restore parameters      | 2: Clear records. Fault records, cumulative        |
|         |                 |           | (including motor           | running time, cumulative power-on time, and        |
|         |                 |           | parameters) to default     | cumulative power consumption are cleared.          |
|         |                 |           | settings                   | 3: Restore parameters (including motor             |
|         |                 |           | 4: Back up current user    | parameters) to factory settings. Except the        |
|         |                 |           | parameters                 | factory parameters and records, all other          |
|         |                 |           | 5: Clear fault information | parameters of the AC drive are restored to         |
|         |                 |           | 501: Restore user backed-  | factory settings. This differs from mode 1 in that |
|         |                 |           | up parameters              | the motor parameters are also restored.            |
|         |                 |           | 503: Restore parameters    | 4: Back up current user parameters. The current    |
|         |                 |           | including motor            | parameter settings are backed up, which is the     |
|         |                 |           | parameters to default      | same as the function when A0-39 is set to 400.     |
|         |                 |           | settings and clear records | 5: Clear fault information. The fault information  |
|         |                 |           | g                          | recorded in group H6 to Hb is cleared.             |
|         |                 |           |                            | 501: Restore user parameters from backup.          |
|         |                 |           |                            | Parameters backed up by setting A0-00 to 4 are     |
|         |                 |           |                            | stored, which is the same as the function when     |
|         |                 |           |                            | A0-38 is set to 500.                               |
|         |                 |           |                            | 503: Restore parameters (including motor           |
|         |                 |           |                            | parameters) to factory settings and clear          |
|         |                 |           |                            | records. Except the factory parameters, all        |
|         |                 |           |                            | other parameters of the AC drive are reset to      |
|         |                 |           |                            | the factory settings. This differs from mode 3 in  |
|         |                 |           |                            | that the records are cleared. The factory          |
|         |                 |           |                            | parameters include model parameters and            |
|         |                 |           |                            | factory AI/AO correction parameters. The           |
|         |                 |           |                            | records include fault records, cumulative          |
|         |                 |           |                            | running time, and cumulative power-on time.        |
|         |                 |           | 1                          | , ,                                                |

# **6.3.3 Setting Motor Parameters**

When the motor type is asynchronous motor, the following table lists the motor parameters that need to be set according to the motor nameplate.

Table 6–8 Parameter setting for asynchronous motor

| Param.           | Name                             | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mandatory or not |
|------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| F1-00<br>(C4-00) | Motor type                       | Set F1-00 to 0 (asynchronous motor) 0: Asynchronous motor 2: Permanent magnet synchronous motor 3: Synchronous reluctance motor without permanent magnet 4: Permanent magnet synchronous reluctance motor                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes              |
| F1-01<br>(C4-01) | Rated motor power                | For applications where multiple motors are driven by one AC drive (multiple motors must be the same), set the rated power of a motor and set the number of parallel motors in C4-13 (Number of parallel motors).                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes              |
| F1-03<br>(C4-03) | Rated motor voltage              | Set the rated motor voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes              |
| F1-04<br>(C4-04) | Rated motor current              | Set the rated motor current. For applications where multiple motors are driven by one AC drive, set the rated current of a single motor and set the number of parallel motors in C4-13 (Number of parallel motors).                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes              |
| F1-06<br>(C4-06) | Rated motor frequency            | Set the rated motor frequency which corresponds to the rated motor voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes              |
| F1-07<br>(C4-07) | Rated motor<br>speed             | The parameter indicates the rated rotor speed of the motor. For synchronous motors, synchronous speed is (rated frequency x 60 $\div$ number of pole pairs), and for asynchronous motors, slip must be considered. Some motor nameplates do not include a rated speed or only list the synchronous speed, so the rated speed can be set according to the following base value.                                                                                                                                                                                                                                                                                          | Yes              |
| F1-10<br>(C4-10) | Maximum<br>motor<br>frequency    | The maximum motor frequency is the base value of the set frequency and acceleration/deceleration time.  Scenarios: When the maximum set frequency is lower than the rated motor frequency, the effective maximum frequency is the rated motor frequency. If you want to set the speed limit, set it in F2-22 to F2-27.                                                                                                                                                                                                                                                                                                                                                  | Optional         |
| F1-11<br>(C4-11) | Minimum<br>motor<br>frequency    | Minimum motor frequency Scenarios: In applications when the motors is not allowed to run at low speed, the minimum motor frequency needs to be set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Optional         |
| F1-14<br>(C4-14) | Number of<br>motor pole<br>pairs | The number of pole pairs can be found on the motor nameplate. It can also be calculated. Number of pole pairs $\approx$ (rated frequency x 60) / rated speed (rated frequency unit: Hz, rated speed unit: rpm) For example, if the rated frequency is 50 Hz and the rated speed is 1450 rpm, the calculation would be: Number of pole pairs $\approx$ (50 Hz x 60) $\div$ 1450 rpm = 2.07 In this case, the decimal part (0.07) represents the slip, which can be ignored. Therefore, the number of pole pairs is rounded down to 2. Scenarios: If the number of pole pairs does not exceed 12, the software automatically calculates the correct number of pole pairs. | Optional         |

# Note

The motor parameters in group F1 in the table are the mapping of motor parameters in group C4. The settings of the two groups are equivalent.

When the motor type is synchronous motor, the following table lists the motor parameters that need to be set according to the motor nameplate.

Table 6–9 Parameter setting for synchronous motor

| Param.           | Name                          | Value                                                                                                                                                                                                                                                                                                                  | Mandatory or not |
|------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| F1-00<br>(C4-00) | Motor type                    | Set F1-00 to 2 (Permanent magnet synchronous motor) 0: Asynchronous motor 2: Permanent magnet synchronous motor 3: Synchronous reluctance motor without permanent magnet 4: Permanent magnet synchronous reluctance motor                                                                                              | Yes              |
| F1-01<br>(C4-00) | Rated motor power             | Sets the rated motor power. For the synchronous motor, multi-motor drive is not allowed. So synchronous motors with amortisseur winding are recommended to be set as asynchronous motor V/f operation.                                                                                                                 | Yes              |
| F1-03<br>(C4-03) | Rated motor voltage           | Set the rated motor voltage.                                                                                                                                                                                                                                                                                           | Yes              |
| F1-04<br>(C4-04) | Rated motor current           | Sets rated motor current                                                                                                                                                                                                                                                                                               | Yes              |
| F1-06<br>(C4-06) | Rated motor frequency         | Sets rated motor frequency                                                                                                                                                                                                                                                                                             | Yes              |
| F1-07<br>(C4-07) | Rated motor<br>speed          | Motor rated rotor speed. Check whether rated speed equals to synchronous speed (rated frequency $\times$ 60 $\div$ Number of pole pairs); otherwise the motor parameters may be incorrect. This can lead to abnormal auto-tuning and operation.                                                                        | Yes              |
| F1-10<br>(C4-10) | Maximum<br>motor<br>frequency | The maximum motor frequency is the base value of the set frequency and acceleration/deceleration time.  Scenarios: When the maximum set frequency is lower than the rated motor frequency, the effective maximum frequency is the rated motor frequency. If you want to set the speed limit, set it in F2-22 to F2-27. | Optional         |
| F1-11<br>(C4-11) | Minimum<br>motor<br>frequency | Minimum motor frequency Scenarios: This parameter is not required for the motors that do not support low-speed operation.                                                                                                                                                                                              | Optional         |

| Param.           | Name                             | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mandatory or not |
|------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| F1-12<br>(C4-12) | Synchronous<br>motor back<br>EMF | The rated back EMF is the back EMF (effective value of the line voltage) when the motor rotates at rated speed without load. It has a significant effect on low-speed performance. Scenarios: If the synchronous motor cannot be auto-tuned for no-load rotation, it is recommended to check the motor nameplate or ask the motor manufacturer to set the motor back EMF accurately. F1-12 is the back EMF at rated speed. If the effective value of the back EMF marked on the nameplate is 120 V/krpm, the rated back EMF = F1-07 $\div$ 1000 x 120 V. If the back EMF is not known, the motor shaft must be disconnected for no-load dynamic auto-tuning. The above procedures only need to be performed once for motors with the same specification. After that, you can manually input the back EMF value.        | Optional         |
| F1-14<br>(C4-14) | Number of<br>motor pole<br>pairs | The number of pole pairs can be found on the motor nameplate. It can also be calculated. Number of pole pairs $\approx$ (rated frequency x 60) / rated speed (rated frequency unit: Hz, rated speed unit: rpm) For example, if the rated frequency is 50 Hz and the rated speed is 1450 rpm, the calculation would be: Number of pole pairs $\approx$ (50 Hz x 60) $\div$ 1450 rpm = 2.07 In this case, the decimal part (0.07) represents the slip, which can be ignored. Therefore, the number of pole pairs is rounded down to 2. Scenarios: If the number of pole pairs does not exceed 12, the software automatically calculates the correct number of pole pairs. Note: The difference between the number of poles and the number of pole pairs is that the number of pole pairs = the number of poles $\div$ 2. | Optional         |

# Note

The motor parameters in group F1 in the table are the mapping of motor parameters in group C4. The settings of the two groups are equivalent.

# 6.3.4 Setting the Motor Control Method

When F1-00 (Motor type) is set to 0 (Common asynchronous motor), F0-01 (Motor control method) can be set according to the application requirements. When F1-00 (Motor type) is set to 2 (Permanent magnet synchronous motor), the SVC mode is recommended.

| Item             | Parameter Name       | Default | Value Range      |
|------------------|----------------------|---------|------------------|
| F0-01<br>(d0-00) | Motor control method | 2       | 0: SVC<br>2: V/f |

# 6.3.5 Setting Motor Control Mode

If F0-01 is set to the V/f control method, only the speed control mode is supported.

If the torque control mode is applied under normal operating conditions, switch to the speed control mode during initial commissioning for motor auto-tuning. After the auto-tuning is completed and running direction is adjusted, switch to the torque control mode again.

| Parameter | Parameter Name     | Default | Value Range                     |
|-----------|--------------------|---------|---------------------------------|
| F0-02     | Motor control mode | 0       | 0: Speed control                |
| (d0-01)   |                    |         | 1: Torque control               |
|           |                    |         | 3: DI1                          |
|           |                    |         | 4: DI2                          |
|           |                    |         | 5: DI3 (active only for MD630S) |
|           |                    |         | 6: DI4 (active only for MD630S) |
|           |                    |         | 7: DI5 (active only for MD630S) |
|           |                    |         | 8: DI6 (active only for MD630S) |
|           |                    |         | 9: DI7 (active only for MD630S) |
|           |                    |         | Others: B connector             |

# 6.3.6 Motor Auto-tuning

Unlike servo systems which use preset parameters, the AC drives need to be matched with different motors and require the motor parameter auto-tuning before operation

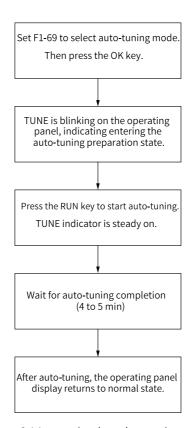



Figure 6-4 Auto-tuning through operating panel

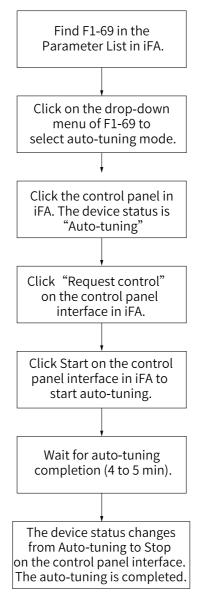



Figure 6-5 Auto-tuning through iFA

Table 6–10 Parameters related to motor auto-tuning

| 0 | Range   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U |         | LO. No. and another a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 0 to 22 | 1: Static partial auto-tuning of asynchronous motor. It applies to scenarios where the motor cannot be disconnected from the load and dynamic auto-tuning is not allowed. Some motor parameters are auto-tuned. Other parameters use default values.  2: No-load dynamic auto-tuning of the asynchronous motor. It applies to scenarios where the motor can rotate at high speed without the load. It supports auto-tuning of all motor parameters under no-load and pure inertia load states.  3: Static complete auto-tuning of asynchronous motor. It applies to scenarios where the motor cannot be disconnected from the load and dynamic auto-tuning is not allowed. Some motor parameters are auto-tuned. The auto-tuning precision is better than that when C2-00 is set to 1.  4: Inertia auto-tuning. This mode is applicable to scenarios requiring high-speed operation. Auto-tuning can be performed without load or with light load (below 80% of the rated load) or pure inertia load. Auto-tuning inertia ratio parameters.  5: Dead zone auto-tuning. This mode is used to tune the non-linear characteristics of the drive, thus improving the voltage output precision and operation efficiency.  12: No-load dynamic auto-tuning of permanent magnet motor. It applies to scenarios where the motor can rotate at high speed without the load. All motor parameters can be tuned.  13: Static partial auto-tuning of permanent magnet motor. It applies to scenarios where the motor cannot be disconnected from the load and dynamic complete auto-tuning. The sampling deviation between output phase currents is auto-tuning. The sampling deviation between output phase currents is auto-tuning. The sampling deviation between output phase currents is auto-tuning is not allowed. Part motor parameters also depends on the setting of C2-01.  15: Reserved  21: Static auto-tuning of synchronous reluctance motor. It applies to scenarios where the motor cannot be disconnected from the load and dynamic complete auto-tuning is not allowed. Part motor parameters are tuned.  22: Complete |
|   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# 6.3.7 Start/stop or set the speed and torque

# 6.3.7.1 Start/Stop or Set Speed and Torque Through Application Macro (Applicable for MD630S)

The MD630S provides application macro function. The application macro is multiple sets of default parameters. Depending on the purpose, it can be divided into interface macros and industry macros. The interface macro is mainly for setting control parameters, and provides 18 sets of default parameters that cover various control methods, including control via the operation panel, terminal control, and communication control. These parameters can be written into the AC drive by selecting the desired interface macro using function code A0-48. After the parameters are written, the motor can be started and debugged directly, significantly reducing the complexity of the debugging process.

Select the interface macros according to the control mode.

- For the initial commissioning of starting/stopping the AC drive through the operating panel, 101 (Quick commissioning macro) is recommended to select.
- For the initial commissioning of digital control for start/stop, it is recommended to choose from the following interface macros: 102 (Two fixed speeds in single-wire mode), 104 (Four fixed speeds in two-wire mode 2), and 108 (Four fixed speeds in three-wire mode 2).
- For the initial commissioning of speed regulation using analog signals, it is
  recommended to choose from the following interface macros: 103 (Analog speed
  regulation in single-wire mode), 105 (Analog speed regulation in two-wire mode 1), 106
  (Analog speed regulation in two-wire mode 2), and 107 (Analog speed regulation in twowire mode 3).
- For the initial commissioning of start/stop and speed regulation using communication (Modbus), it is recommended to use 113 (Modbus communication control macro).

The optional interface macros are listed in the table below. Users can select according to the specific needs.

Table 6–11 Interface macro description

| Param. | Parameter<br>Name  | Optional Macro                                                          | Function Description                                                                                                                                                                                                                                                                                                      |  |  |                                           |                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|--------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0-48  | Interface          | 0                                                                       | No operation                                                                                                                                                                                                                                                                                                              |  |  |                                           |                                                                                                                                                                                                                                                                                                                                                                                          |
|        | macro<br>selection | 101: Quick commissioning macro                                          | Scenario: Start/stop the AC drive and set the frequency through the local operating panel.  • After pressing the RUN key on the operating panel, the AC drive operates.                                                                                                                                                   |  |  |                                           |                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                    | 102: Two fixed speeds in single-<br>wire mode                           | Scenario: Start/stop the AC drive through the terminal in single-wire mode, and set frequency through multireference.  • When DI1 is closed, the AC drive runs at the first fixed frequency.  • When DI1 and DI2 are closed, the AC drive runs at the second fixed frequency.  • When DI3 is open, the AC drive stops.    |  |  |                                           |                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                    | 103: Analog speed regulation in single-wire mode                        | Scenario: Start/stop the AC drive through the terminal in single-wire mode, and set frequency through analog inputs.  • When DI1 is closed, the AC drive runs.  • Set the frequency through AI1.                                                                                                                          |  |  |                                           |                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                    |                                                                         |                                                                                                                                                                                                                                                                                                                           |  |  | 104: Four fixed speeds in two-wire mode 2 | Scenario: Start/stop the AC drive through the terminals in two-wire mode 2, and set frequency through multi-reference.  • When DI1 is closed and DI2 is open, the AC drive runs at the forward direction. When DI1 is open and DI2 is closed, the AC drive runs at the reverse direction.  • Four fixed frequencies (Multi-speed) can be set through the combination use of DI4 and DI5. |
|        |                    | 105: Analog speed regulation in two-wire mode 1                         | Scenario: Start/stop the AC drive through the terminals in two-wire mode 1, and set frequency through analog inputs.  • When DI1 is closed, the AC drive runs at the forward direction. Remain DI1 is closed and close DI2, then the AC drive runs at the reverse direction.  • Set the frequency through AI1.            |  |  |                                           |                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                    | 106: Analog speed regulation in<br>two-wire mode 2<br>(To be continued) | Scenario: Start/stop the AC drive through the terminals in two-wire mode 2, and set frequency through analog inputs.  • When DI1 is closed and DI2 is open, the AC drive runs at the forward direction. When DI1 is open and DI2 is closed, the AC drive runs at the reverse direction.  • Set the frequency through AI1. |  |  |                                           |                                                                                                                                                                                                                                                                                                                                                                                          |

| Param. | Parameter<br>Name               | Optional Macro                                                    | Function Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0-48  | Interface<br>macro<br>selection | (Continued)<br>107: Analog speed regulation in<br>two-wire mode 3 | Scenario: Start/stop the AC drive through the terminals in two-wire mode 3, and set frequency through analog inputs.  • When DI1 signal is in the rising edge and DI2 is closed, the AC drive runs.  • When DI2 is open, the AC drive stops.  • Set the frequency through AI1.                                                                                                                                                                                                      |
|        |                                 | 108: Four fixed speeds in three-wire mode 2                       | Scenario: Start/stop the AC drive through the terminals in three-wire mode 2, and set frequency through multi-reference.  • When DI1 signal is in the rising edge and DI4 is closed, the AC drive runs at the forward direction. When DI2 signal is in the rising edge and DI4 is closed, the AC drive runs at the diverse direction. When DI4 is open, the AC drive stops.  • Four fixed frequencies (Multi-speed) can be set through the combination use of DI5 and DI6.          |
|        |                                 | 109: Analog speed regulation in three-wire mode 1                 | Scenario: Start/stop the AC drive through the terminals in three-wire mode 1, and set frequency through analog inputs.  • When DI2 is closed and DI1 changes from open to closed (0->1 triggered), the AC drive starts in the forward direction. When DI4 is closed, the AC drive rotates in the reverse direction. When DI2 is open, the AC drive stops                                                                                                                            |
|        |                                 | 110: Analog speed regulation in three-wire mode 2                 | <ul> <li>Set the frequency through AI1.</li> <li>Scenario: Start/stop the AC drive through the terminals in three-wire mode 2, and set frequency through analog inputs.</li> <li>When DI1 signal is in the rising edge and DI4 is closed, the AC drive runs at the forward direction. When DI2 signal is in the rising edge and DI4 is closed, the AC drive runs at the diverse direction. When DI4 is open, the AC drive stops.</li> <li>Set the frequency through AI1.</li> </ul> |
|        |                                 | 111: Analog PID controller                                        | Scenario: Start/stop the AC drive through the terminal in single-wire mode and set frequency through PID regulation.  • When DI1 is closed, the AC drive runs.  • Al1 is used as the PID reference.  • Al2 is used as the PID feedback.                                                                                                                                                                                                                                             |
|        |                                 | 112: PID controller with fixed reference value (To be continued)  | Scenario: Start/stop the AC drive through the terminal in single-wire mode and set frequency through PID regulation.  • When DI1 is closed, the AC drive runs.  • Local PID is used as PID reference.  • AI1 is used as the PID feedback.                                                                                                                                                                                                                                           |

| Param. | Parameter<br>Name               | Optional Macro                                                                    | Function Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0-48  | Interface<br>macro<br>selection | (Continued)<br>113: Modbus communication<br>control macro                         | Scenario: Start/stop the AC drive and set the frequency through Modbus communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                 | 114: Modbus communication<br>control macro with DI terminal<br>start/stop control | Scenario: Start/stop the AC drive through the terminal in single-wire mode and set frequency through Modbus communication.  • When DI1 is closed, the AC drive runs.  • Set the frequency through Modbus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                 | 115: Multi-channel switchover 1                                                   | Scenario: Switch between the set channel (frequency reference) and terminal start/stop module (terminal control mode).  • Terminal start/stop module A, set channel 1: Start the AC drive through DI1; make the AC drive run at reverse direction through DI2; set the frequency reference through AI1.  • Terminal start/stop module B, set channel 2: Make AC drive start in the forward direction through DI6 and AC drive start in the reverse direction through DI7; set the frequency reference through AI2.  • When DI4 is closed, the user can switch between set channel 1 and set channel 2.  • When DI5 is closed, the user can switch between terminal start/stop module A and terminal start/stop module B. |
|        |                                 | 116: Multi-channel switchover 2                                                   | Scenario: Switch between the two control channels and between the two set channels.  Control channel 1, set channel 1: Terminal control start/stop, frequency set by Al1  Control channel 2, set channel 2: Communication controls start/stop and frequency reference.  When Dl4 is closed, the user can switch between control channel 1 and control channel 2.  When Dl5 is closed, the user can switch between set channel 1 and set channel 2.                                                                                                                                                                                                                                                                       |
|        |                                 | 117: Jog control through DI<br>terminal                                           | Scenario: Jog control through terminals.  When DI1 is closed, the AC drive starts by jogging 1 mode.  When DI2 is closed, the AC drive starts by jogging 2 mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# **Operation steps**

- 1. Restore factory settings of the AC drive.

  Set A0-00 (Parameter initialization) to 1 to restore parameters (excluding motor parameters) to default settings.
- 2. Set interface macro parameters.

Select a macro from 101 to 118 to write to A0-48 (Interface macro selection). For example, to select analog speed regulation in two-wire mode 2, set A0-48 to 106.

3. Check whether the application macro is active.

Check whether the value of A0-49 is the macro number written in step 2. For example, if the macro number written step 2 is 106, the value of A0-49 shall be 106, which indicates the parameters are successfully set.

#### 4. Wiring

The control interfaces such as DI and AI terminals need to be wired.

#### 5. Function verification

Verify the macro function based on the macro number selected. For example, if 106 (Analog speed regulation in two-wire mode 2) is selected, when DI1 is closed and DI2 is disconnected, the motor runs in the forward direction at the speed provided by AI1. When DI1 is disconnected and DI2 is closed, the motor runs in the reverse direction at the speed provided by AI1.

After the above settings, the user can control the AC drive start/stop by DI terminal in two-wire mode, and the motor speed by AI1 input.

- In the stop state, closing DI1 and disconnecting DI2 give the AC drive start command in the forward direction and the motor runs in the forward direction at the speed corresponding to the Al1 input;
- In the stop state, closing DI2 and disconnecting DI1 give the AC drive start command in the reverse direction and the motor runs in the reverse direction at the speed corresponding to the Al1 input;
- In the running state, disconnect DI1 or DI2 to set the stop command of the AC drive;
- In the fault state, close DI3 to set the fault reset command of the AC drive.

## 6.3.7.2 Start/Stop or Set Speed and Torque Through Operating Panel

#### Operating procedure

## Note

The first two steps can be configured by setting A0-48 (Interface macro selection) to 101 (Quick commissioning macro). For details, see "6.3.7.1 Start/Stop or Set Speed and Torque Through Application Macro (Applicable for MD630S)" on page 53 (Available only for MD630S).

#### Step 1: Start or stop the AC drive through the operating panel

Set F0-03 (Main command source of control channel 1) to 0 to select the operating panel as the AC drive command source. You can control the AC drive start/stop through the operating panel.

#### Step 2: Set frequency or torque

#### Setting frequency through parameter settings

- 1. Set F0-02 (Motor control mode) = 0 (Speed control).
- 2. Set F0-29 (Main frequency source) to 0 [Set by the parameter (F0-30)].
- 3. Set the frequency in Hz through F0-30 (Main frequency digital setting). When the main frequency source is set by parameters, in addition to directly modifying the value of the parameters to set the frequency, you can also set the frequency by using the UPDOWN keys.

When the AC drive is stopped or running, You can increase the set frequency by pressing the key on the operating panel. Using key to decrease the frequency setting. The two keys help to set the frequency to the target value in real time.

Then the motor can operate in speed control mode by setting the operating panel.

- In the stop state, press to set the start command of the AC drive. The AC drive starts at the frequency set by F0-30.
- In the running state, press to set the stop command of the AC drive.
- In the fault state, press

  to set the fault reset command.

## Setting torque through operating panel

- 1. Set F0-02 (Motor control mode) = 1 (Torque control).
- 2. Set b5-13 (Torque reference source) to 0 [Set by the parameter (b5-14)].
- 3. Set the target torque in percentage, which is the percentage of motor rated torque through b5-14 (Torque reference digital setting).

Then the motor can operate in torque control mode by setting the operating panel.

- In the stop state, press to set the start command of the AC drive. The AC drive outputs torque set by b5-14.
- In the running state, press to set the stop command of the AC drive.
- In the fault state, press to set the fault reset command

## 6.3.7.3 Start/Stop or Set Speed and Torque Through DI Terminal

Start/stop the AC drive through DI terminal, and control the motor speed through multireference.

## Wiring

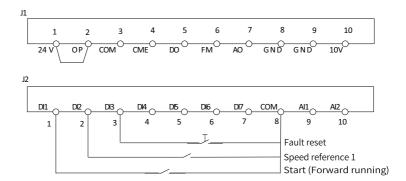



Figure 6-6 Wiring diagram

## **Operation steps**

## Note

The first two steps can be configured by setting A0-48 (Interface macro selection) to 102, 104, or 108. For details, see "6.3.7.1 Start/Stop or Set Speed and Torque Through Application Macro (Applicable for MD630S)" on page 53 (Available only for MD630S).

#### Step 1: Start or stop the AC drive through the DI terminal

- Set the terminals as the active command source (F0-03 (Main command source of control channel 1) = 1)
- 2. Set the terminal mode.

Set the terminal command of terminal module A/B through F4-01 (Mode of terminal start/stop module A) / F4-02 (Mode of terminal start/stop module B). Six terminal control modes (corresponding to value 1 to 6) are available, including one-wire mode, two-wire mode 1, two-wire mode 2, two-wire mode 3, three-wire mode 1, and three-wire mode 2.

Terminal module A and B can be switched freely from terminal module A (two-wire mode 2) to terminal module B (three-wire mode 1).

3. Configure the terminal function. (F4-03: DI1 function selection to F4-09: DI7 function selection) After the terminal mode and each DI terminal function are configured, start/ stop and fault reset can be performed on the AC drive through the DI terminal. MD630N includes only DI1 and DI2.

In default setting, the AC drive terminal command is one-wire mode, and the default value of F4-03 (DI1 function selection) is 1 (Terminal start/stop module A IN1). In other words,

after setting F0-03 (Main command source of control channel 1) = 1 [Terminal] in the default condition, the start/stop command can be given to the terminal by closing the DI1 terminal.

#### Step 2: Set frequency or torque through multi-reference

#### Set frequency as follows:

Set F0-29 (Main frequency source) = 6 (Multi-reference) to select multi-reference as the frequency source.

- 1. Set F0-02 (Motor control mode) = 0 (Speed control).
- 2. Set the multi-reference as follows:
  - Set F0-39 (Multi-reference 0) to 50%
  - Set F0-40 (Multi-reference 1) to 100%
- 3. Assign DI terminal function with multi-reference terminal 1 (select one of F4-03 to F4-09 = 12). Choose any terminal from DI1 to DI7.
- 4. After the above settings, the value of F0-39 (Multi-reference 0) is 50%, and the AC drive running frequency is 50% of the value of C4-06 (Rated motor frequency).

After the above settings, the user can control the AC drive start/stop by DI terminal, and the motor speed by multi-reference.

For example, if the default one-wire mode is configured (DI1 function: Terminal start/stop module A\_IN1) and the DI2 function is multi-reference terminal 1 (F4-04=12),

- in the stop state, closing DI1 gives the AC drive start command and the motor runs at the frequency corresponding to the value of F0-39.
- in the running state, after closing DI2, the motor runs at the frequency corresponding to the value of F0-40.
- in the running state, disconnect DI1 to set the stop command of the AC drive;
- in the fault state, close DI3 to set the fault reset command of the AC drive.

## Note

This example illustrates only two speed references of the multi-references. This product supports up to 16 references of speed adjustment via the DI terminal.

#### Set torque as follows:

Set b5-13 (Torque reference source) to 6 (multi-reference) to select the multi-reference output as the torque reference.

- 1. Set F0-02 (Motor control mode) = 1 (Torque control).
- 2. Set the multi-reference as follows:
  - Set F0-39 (Multi-reference 0) to 50%
  - Set F0-40 (Multi-reference 1) to 100%
- 3. Assign DI terminal function with multi-reference terminal 1 (select one of F4-03 to F4-09 = 12). Choose any terminal from DI1 to DI7.

4. After the above settings, the value of F0-39 (Multi-reference 0) is 50%, and the torque reference is 50%

After the above settings, the user can control the AC drive start/stop by DI terminal, and the motor output torque by multi-reference.

For example, if the default one-wire mode is configured (DI1 function: Terminal start/stop module A\_IN1) and the DI2 function is multi-reference terminal 1 (F4-04=12).

- in the stop state, closing DI1 gives the AC drive start command and the motor outputs the torque based on the F0-39.
- in the running state, after closing DI2, the motor outputs the torque based on the value of F0-40.
- in the running state, disconnect DI1 to set the stop command of the AC drive;
- in the fault state, close DI3 to set the fault reset command of the AC drive.

## Note

This example illustrates only two torque references of the multi-references. This product supports up to 16 references of torque adjustment via the DI terminal.

## 6.3.7.4 Start/Stop AC Drive Through DI Terminal and Set Speed and Torque Through

#### **Analog Setting**

MD630 supports two analog signal inputs, Al1 and Al2, which can be configured for either voltage or current signals.

## Wiring

If there is no stable analog signal on site, PLC or sensor can be used as the source of analog signal. In this case, connect the positive and negative terminals of the DC power supply directly to the AI and GND terminals of MD630. The wiring diagram is shown below (using the MD630S as an example).

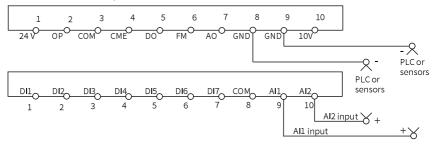



Figure 6-7 Wiring diagram (1)

If a potentiometer is used on site as a source of analog signals, use the 10V voltage output provided by the MD630 and connect a variable resistor. This method allows to change AI input through voltage by adjusting the variable resistor. However, this method is only applicable to voltage signals as analog inputs, not to current signal inputs.

The wiring diagram is shown below (using the MD630S as an example).

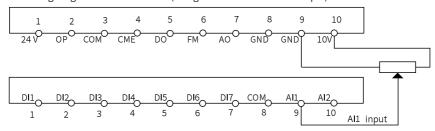



Figure 6-8 Wiring diagram (2)

## **Operation steps**

## Note

The first two steps can be configured by setting A0-48 to 103, 105, 106, or 107. For details, see "6.3.7.1 Start/Stop or Set Speed and Torque Through Application Macro (Applicable for MD630S)" on page 53 (Available only for MD630S).

#### Step 1: Start or stop the AC drive through the DI terminal

- Set the terminals as the active command source (F0-03 (Main command source of control channel 1) = 1)
- 2. Set the terminal mode.

Set the terminal command of terminal module A/B through F4-01 (Mode of terminal start/stop module A) / F4-02 (Mode of terminal start/stop module B). Six terminal control modes (corresponding to value 1 to 6) are available, including one-wire mode, two-wire mode 1, two-wire mode 2, two-wire mode 3, three-wire mode 1, and three-wire mode 2.

Terminal module A and B can be switched freely from terminal module A (two-wire mode 2) to terminal module B (three-wire mode 1).

3. Configure the terminal function. (F4-03: DI1 function selection to F4-09: DI7 function selection) After the terminal mode and each DI terminal function are configured, start/ stop and fault reset can be performed on the AC drive through the DI terminal. MD630N includes only DI1 and DI2.

In default setting, the AC drive terminal command is one-wire mode, and the default value of F4-03 (DI1 function selection) is 1 (Terminal start/stop module A\_IN1). In other words, after setting F0-03 (Main command source of control channel 1) = 1 [Terminal] in the default condition, the start/stop command can be given to the terminal by closing the DI1 terminal.

## Step 2: Set frequency or torque through AI

#### Set frequency as follows:

When F0-29 (Main frequency source) = 2 (AI1)/3 (AI2) is set, the AI terminal is selected as the source of the frequency reference. The AI input is converted to the input ratio through the AI curve. 100.0% of the input ratio corresponds to rated motor frequency (F1-06).

- 1. Set F0-02 (Motor control mode) = 0 (Speed control).
- 2. Set Al1 curve to "0 V to 10 V corresponds to 0% to 100%":
  - Set F4-28 (minimum input of AI curve 1) to 0.00 V.
  - Set F4-29 (Percentage corresponding to minimum input of Al curve 1) to 0.0%.
  - Set F4-30 (maximum input of Al curve 1) to 10.00 V.
  - Set F4-31 (Percentage corresponding to maximum input of AI curve 1) to 100.0%.
- 3. Set AI filter time through F4-21 (AI1 filter time).
- 4. Set F0-29 (Main frequency source) = 2 (AI1) to select AI as the frequency source.

  The AI terminal defaults to voltage input mode, and if you need to switch to current input mode, use the DIP switch. For the current-type AI input, 1 mA current corresponds to 0.5 V voltage. That is, 20 mA corresponds to 10 V.

After setting the preceding steps, when Al1 input 5 V power, the AC drive obtains the Al1 curve conversion of 50%, and the AC drive runs at 50% of C4-06 [Rated motor frequency]. When Al1 input voltage is changed, the running frequency changes according to the Al1 curve.

After the above settings, the user can control the AC drive start/stop by DI terminal, and the motor speed by Al1 input.

For example, if the default one-wire mode is configured,

- in the stop state, closing DI1 gives the AC drive start command and the motor runs at the frequency corresponding to the Al1 input;
- in the running state, disconnect DI1 to set the stop command of the AC drive;
- in the fault state, close DI3 to set the fault reset command of the AC drive.

## Set torque as follows:

Take IS620N as an example:

- 1. Set F0-02 (Motor control mode) = 1 (Torque control).
- 2. Set AI1 curve to "0 V to 10 V (or 0 mA to 20 mA) corresponds to 0% to 100%":
  - Set F4-28 (minimum input of AI curve 1) to 0.00 V.
  - Set F4-29 (Percentage corresponding to minimum input of Al curve 1) to 0.0%.
  - Set F4-30 (maximum input of Al curve 1) to 10.00 V.
  - Set F4-31 (Percentage corresponding to maximum input of Al curve 1) to 100.0%.
- 3. Set AI filter time through F4-21 (AI1 filter time).
- 4. Set b5-13 (Torque reference source) = 2 (Al1) to select Al1 as the torque source.

After setting the preceding steps, when AI1 input 5 V power, the AC drive obtains the AI1 curve conversion of 50%, and the torque setting is 50%. When AI1 input voltage is changed, the torque setting changes according to the AI1 curve.

After the above settings, the user can control the AC drive start/stop by DI terminal, and the motor output torque by Al1 input.

For example, if the default one-wire mode is configured,

- in the stop state, closing DI1 gives the AC drive start command and the motor runs and outputs the torque based on the Al1 input;
- in the running state, disconnect DI1 to set the stop command of the AC drive;
- in the fault state, close DI3 to set the fault reset command of the AC drive.

#### 6.3.7.5 Start/Stop or Set Speed and Torque Through EtherCAT Communication (Applica-

## ble for MD630N)

#### **Prerequisite**

Ensure the controller and AC drive is connected properly.

For example, AC801 serves as the EtherCAT master and MD630N as the EtherCAT slave. The communication network topology is as follows.

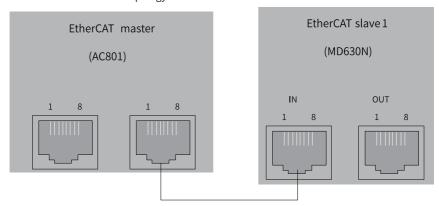



Figure 6-9 Network topology

The EtherCAT bus uses standard RJ45 network ports with standard registered jacks, and uses 100BASETX Category 5 cable, allowing a maximum cable length of 100 meters between two devices and supporting a maximum number of stations of 65535.

#### Connecting steps:

- 1. Disable system power supply of the AC drive.
- 2. Connect the EtherCAT master and EtherCAT slave with shielded network cables.
- 3. Power on the AC drive after ensuring that connections other than communication connection are correct.

## **Operation steps**

#### Step 1: Start or stop the AC drive through remote communication

1. Set F0-03 (Main command source of control channel 1) to 2 to select the communication as the active command source.

When the command source is set to communication, you need to configure basic communication parameters to enable the AC drive to communicate with the host controller. The host controller needs to follow the communication address and format specified by the AC drive to write communication commands to the AC drive.

## Step 2: Set the frequency or torque through communication

Set frequency as follows:

- 1. Set b0-03 to 0 and b5-00 to 9 to select communication as the main frequency reference source of set channel 1.
- Set n0-14 (7310H speed setting) to the following values according to on-site requirements.

0: Frequency (unsigned 16-bit) 1: Frequency (signed 16-bit) 2: Speed (signed 16-bit) 3: Percentage (corresponds to the rated frequency/signed 16-bit/two decimal places) 4: Percentage (corresponds to the maximum frequency/signed 16-bit/two decimal places)

## Set torque as follows:

- 1. Set b0-03 to 0 and b5-13 to 9 to select communication as the torque reference source of set channel 1.
- 2. It is recommended to set n0-14 to 1.

#### Step 3: Establish EtherCAT communication connection

- 1. Set the value of n0-10 to 1 (through operating panel or the software tool). Set the communication mode to EtherCAT.
- Wait for a few seconds until LED0 to become green and LED1 to become steady yellow.This indicates that the slave and master are connected successfully and there is data exchange.
- 3. Import the device description file (XML) of the MD630N to the host controller software (otherwise, the slave cannot be added later) and add the MD630N device.
- 4. Open the host controller software InoProShop and select "New Project". Select the PLC model in the pop-up interface, and click "OK". Save the project to the specified path (path can be modified).

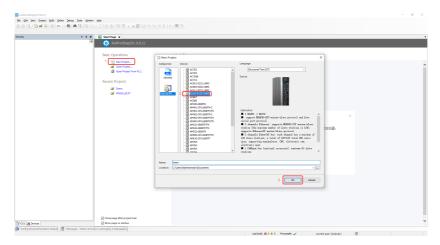



Figure 6-10 Create a project

Import the device description file (XML) of the AC drive; otherwise, the AC drive cannot be identified.

Click "Tools"-> "Device Repository". Then after the pop-up interface appears, click Install.

C:\Users\Administrator\Documents\Demo\Demo.project - InoProShop(V1.9.0.1) <u>File Edit View Project Build Online Debug Tools Window Help</u> Package Manager... - 📑 🔛 👑 I 😘 🤫 🐧 🕞 🖳 l 管 🔛 l 🗐 l 🙊 🖔 InoPkgManager Library Repository... Devices CAT D InoMD630N Device Repository... □ Demo Scan r tion Settings InoProShop Tool Device (AC81X-0122-U0R0) Fault Diagnose Scripting Network Configuration Customize... EtherCAT Config Restore Options... PLC Logic **PLC** settings Application DifferentialMonitor Users and Groups Library Manager PLC PRG (PRG) Files Task Configuration PLC shell ETHERCAT\_D ETHERCAT\_D.EtherCAT\_Task OPC UA □ S MainTask PLC\_PRG Log Resources List

Figure 6-11 Add a device description file

6. After clicking **Install**, the "**Install Device Description**" interface appears. Select the file in "\*.xml" format. Otherwise, the XML file of the device cannot be displayed. Click "**Open**" and wait for a few seconds. Then the installation is completed.

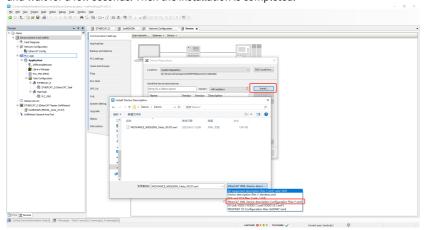



Figure 6-12 Install the device description file

7. After entering the interface, double-click "Device" and the blank area on the right displays detailed information. Then, click "Scan network" to pop up the "Select Device" window, and then scan the network to identify the PLC device.



The IP address of the computer connected to the PLC should be set in the same segment as the PLC's IP which can be viewed through the panel.

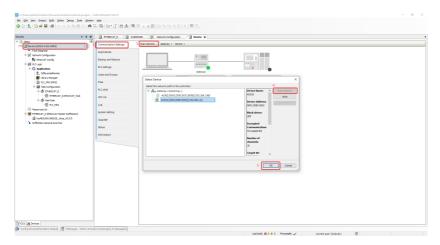



Figure 6-13 Scan and identify the master device

8. After identifying the correct PLC, click "**Network Configuration**" to select the supported communication interface. Check the "**EtherCATMaster**" box.

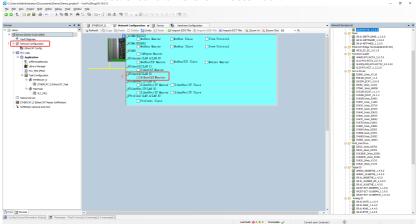



Figure 6-14 Configure master communication interface

9. Locate "ETHERCAT\_D (EtherCAT Master SoftMotion)" in the device bar on the left. Right-click on the pop-up bar and select "Scan Device". The Scan Devices window will pop up. Click "Scan Device" below to scan the MD630N. Click "Copy Scan Device" to complete adding the AC drive.

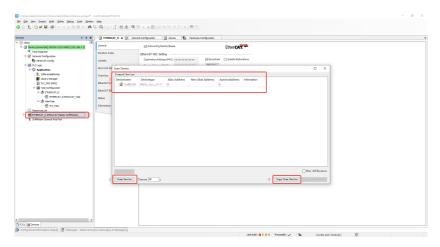
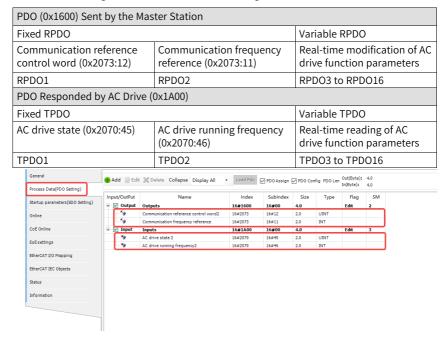




Figure 6-15 Scan the slave device

10. After adding the AC drive, the user can configure PDO on the slave device.
The default fixed PDO mapping in the XML file meets basic motor control requirements.
The PDO exchange data is detailed in the following table.



11. Click "Compile". Wait until the compilation is complete, and then click "Login" to wait for the program to be downloaded to the PLC.

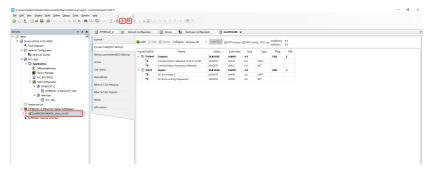



Figure 6-16 Login and download to PLC

12. After login and download are complete, click the start button. The green mark appears on the right side of the MD630N device in the left column to indicate that the device is started and communication is established properly. In this case, the user can monitor the I/O variables of the configuration mapping, as well as online COE and state machine operations.

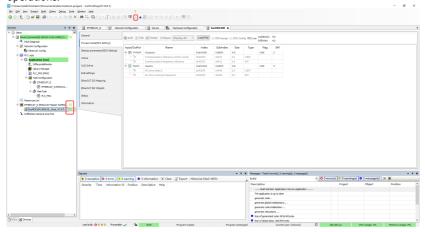
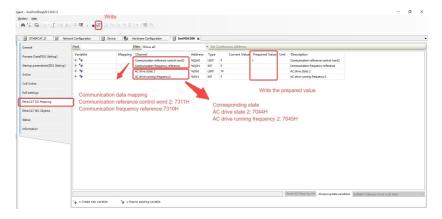




Figure 6-17 Establish communication successfully between the master and slave

## Step 4: Control the AC drive through communication

1. To control the motor, set the corresponding I/O mapping variable value according to the mapping address of the communication data.



2. For start/stop control and setting frequency or torque using EtherCAT communication, read and write specific communication addresses of the AC drive. In other words, the specific addresses are mapped to the PDO data of EtherCAT.
For start/stop control and setting frequency or torque, 7311H and 7310H need to be need to be mapped to the PDO data.

The 7311H is one of the communication addresses of control command supported by the AC drive. It is defined as follows:

| Communication Address                      |       | Description                                                                                                                                                                                                                                                       |
|--------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication<br>setting control<br>word 2 | 7311H | The setpoint of 7311H is in decimal format.  0: Stop according to the stop mode set by F2-17  1: Forward run  2: Reverse run  3: Jog 1  4: Jog 2  5: Coast to stop  6: Stop according to the stop mode specified by F2-17  7: Reset upon fault  8: Emergency stop |

For example, write 1 to 7311H to control the forward running of the AC drive. Write 0 to 7311H to stop the AC drive according to the mode set in F2-17 (ON\_OFF1 (start/stop) stop mode).

The 7310H is one of the communication addresses of frequency reference supported by the AC drive. It is defined as follows:

| Communicat                                | ion Address | Description                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication<br>speed setting<br>value 2 | 7310Н       | The target frequency can be set through the communication address. The attributes of values written by this address is defined by n0-14 [7310H speed setting].  0: Frequency (UInt16)  1: Frequency (Int16)  2: Speed (Int16)  3: Percentage (corresponds to rated frequency/ Int16/2 decimal places)  4: Percentage (corresponds to maximum frequency/ Int16/2 decimal places) |

In default settings, when n014 = 1 is set, write 1000 to 7310H to set the main frequency to  $10.00 \, \text{Hz}$ . Write -1000 to set the main frequency to -10.00 Hz.

The corresponding state is as follows.

| Communicat                   | Communication Address Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC drive state 2             | 7044H                             | The value format of 7044H is hexadecimal. The AC drive states corresponding to bit values are as follows: Bit00: Running status. 0: Stopped; 1: Running Bit01: Running direction. 0: Forward; 1: Reverse Bit02: Fault state. 0: No fault; 1: Fault Bit03: Frequency reached. 0: Not reached; 1: Reached Bit04: Reserved Bit05: Reserved Bit06: Reserved Bit07: Reserved Bit07: Reserved Bit08: Fault master code. For details, see specific fault descriptions. |
| AC drive running frequency 2 | 7045H                             | 2 decimal places, signed number, unit Hz by default.<br>The decimal places is switchable via A0-71.                                                                                                                                                                                                                                                                                                                                                             |

## 6.3.7.6 Start/Stop or Set Speed Through iFA

## **Preparation**

- 1. Prepare a PC.
- 2. Visit the official website of Inovance (<a href="http://www.inovance.com">http://www.inovance.com</a>) to download and install the iFA commissioning software.
- 3. Select optional relay module (SOP20 is recommended.)
- 4. Prepare the network cable, USB cable, and type-C cable.

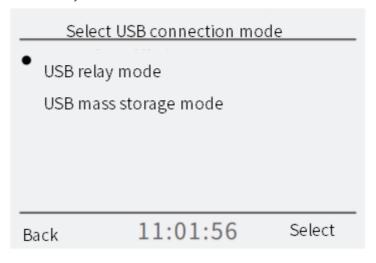
## **Operation steps**

Step 1: Install the iFA software on the PC.

Step 2: Wiring

A relay connection is required between the PC and the AC drive. SOP-20 is recommended as the relay. The PC is connected to the relay via a USB cable, and the relay is connected to the AC drive using a network cable, as shown in the following figure.




For wiring procedures using SOP-20, see the following section. For more details, see SOP-20 User Guide.

#### Wiring of relay (SOP-20)

1. Open the USB cover and locate the USB port. The cover is located in the middle of the SOP-20, as shown in the following figure.



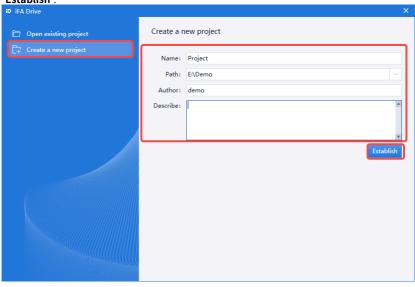
- 2. Insert one end of the USB cable to the USB port of SOP-20, and the other end to the USB port of the PC.
- 3. Select the "USB relay mode".



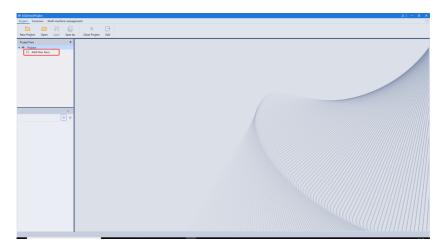
4. Use a network cable to connect one end to the network cable interface on the back of SOP-20 and the other end to the J12 external keyboard interface on the MD630 control board

#### Step 3: Create a project and connect to the device

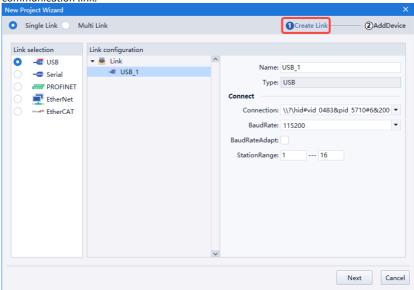
### Note


Take the following measures:

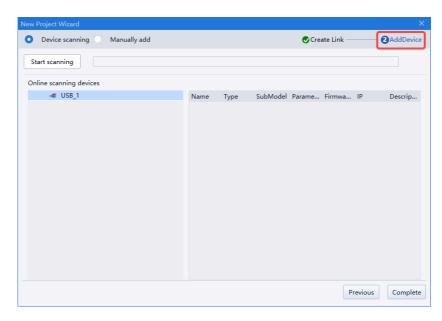
Set the motor parameters correctly according to the motor nameplate. See "6.3.3 Setting Motor Parameters" on page 46.


Defines the motor control mode. See "6.3.4 Setting the Motor Control Method" on page 48 and "6.3.5 Setting Motor Control Mode" on page 48.

Perform motor auto-tuning. See "6.3.6 Motor Auto-tuning" on page 49.


 Click "Create a new project", fill in the corresponding information, and then click "Establish".

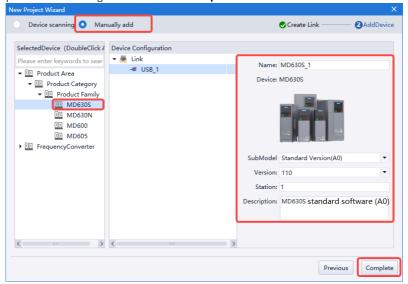



2. After the creation is complete, enter the iFA man interface. Double-click "Add New Item" under the project name to start adding AC drive device information.

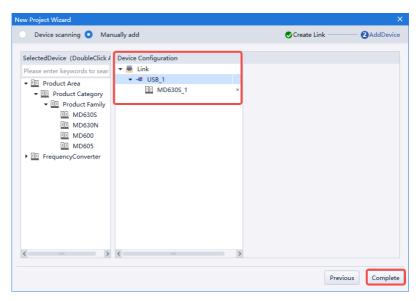



3. Go to "Create Link" on the first page of the New Project wizard to create a communication link.




4. After creating the link, go to "Add Device" on the second page of the New Project wizard.




- 5. There are two ways to add devices: Device scanning and manually add.
  - For scanning the device select "Device Scanning" and click "Start scanning". The
    progress bar on the right side starts to display the scan progress. 100% indicates that
    the scan is complete. The scanned device information is displayed below. After the
    device is scanned online, click the Complete button in the lower right corner to



To add the device manually, the user needs to know the type of devices to connect.
 Check "Manually add" and click the device type to be added in the "Selected Device" tab on the left, such as "MD630S". Set the name, station number and other parameters in the right tab. Then click "Complete".



After the addition is successful, the **Device Configuration** bar displays the name of the added device as shown in the following figure. Click "**Complete**" to create a project.



6. After adding a new project, automatically return to the iFA main interface. The device name you added is displayed under the project tree. The main display area displays the configured communication link information.

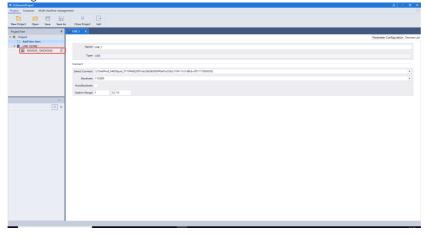



Figure 6-18 Main interface after adding a device

Right-click the device name and select "Connect" in the pop-up box to connect the device.

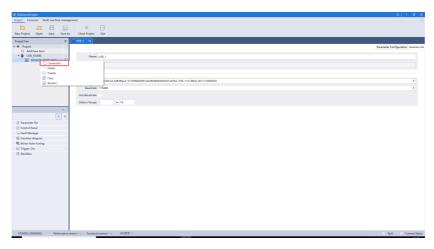
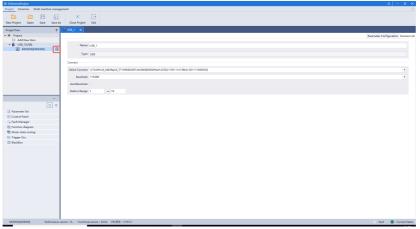
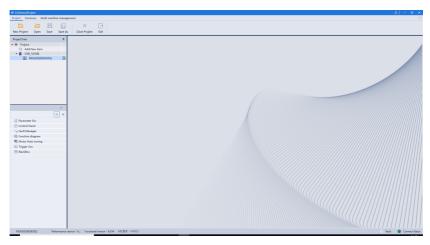
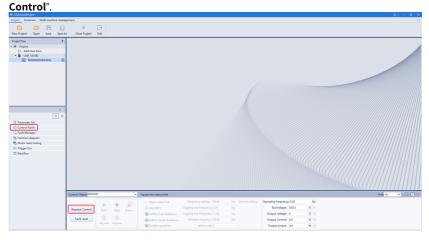





Figure 6-19 Connecting the device

8. When the green flag shown in the following figure is displayed after the device name, the device is connected and the new project is created.




9. After creating a project and connecting the device, enter the following interface.



Step 4: Start/stop or set the speed through the iFA commissioning software

 $1. \ \, \text{Double-click ``Control Panel''} \ \, \text{on the left to open the control panel, and click ``Request'}$ 



2. In the frequency setting window, adjust the frequency setting.



3. In the stop state, click the "**Start**" button to rotate the motor according to the frequency set in the above step.



4. In the running state, click the "**Stop**" button to decelerate the motor to stop.



# 7 Troubleshooting

The following table lists the solutions for common fault codes.

## Note

After troubleshooting, perform fault reset to make the AC drive exit the faulty state. The fault reset includes manual reset (available for all fault codes) and automatic reset.

| Fault<br>Code                | Name  | Fault Cause                                                              | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solution                                                                                                                                                                                                                                                                                                                 | Reset<br>Mode   |
|------------------------------|-------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E002.1 Hardware over-current | over- | Output grounded                                                          | Method 1: Measure the resistance of the output side to ground with a tramegger. If it is not at the $M\Omega$ level, the resistance is abnormal. Method 2: Enable manual self-test (C2-04 = 1) and enable the drive to run. If a fault is reported, an exception occurs Note: When the grid is an IT system, short circuit to ground cannot be detected during self-check. To enable this function, install an insulation monitor to the IT system. | Check the short circuit to ground part. Replace the UVW output cables or motor.                                                                                                                                                                                                                                          | Manual<br>reset |
|                              |       | Output inter-phase short circuit                                         | Method 1: Measure the resistance between UV, VW, and WU with a multimeter to check whether the resistances are symmetrical. If resistances are not symmetric, an exception occurs.  Method 2: Enable manual self-test (C2-04 = 1) and enable the drive to run. If a fault is reported, an exception occurs                                                                                                                                          | Check the short-<br>circuited output phases.<br>Replace the UVW output<br>cables or motor.                                                                                                                                                                                                                               |                 |
|                              |       | Speed loop<br>parameter setpoints<br>too high (SVC)<br>(To be continued) |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. Reduce the speed loop Kp (F2-02) to half the current value and set the speed loop Ti (F2-03) to 2s. Start operating and observe whether the drive can run smoothly. If the fault persists, halve the speed loop Kp again.  2. If the fault persists, the fault is not caused by excessively high parameter setpoints. |                 |

| Fault  | Name                                                                      | Fault Cause                                                                                                    | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solution                                                                                                                                                                                                                                                                                                | Reset<br>Mode           |
|--------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| E002.1 | Hardware over-current (Continued) Synchronous motor demagnetization (SVC) | Synchronous motor demagnetization (SVC)                                                                        | 1. Check whether the carrier frequency A5-01 is set to an excessively low value. 2. Check whether the speed control oscillates. Check whether the actual speed jitters excessively through the continuous oscilloscope function of the iFA drive commissioning software. 3. Check whether the motor back EMF harmonics and output current harmonics are excessively high. 4. Check whether the motor EMF is too low. Record the current back EMF (F1-12). Disconnect the motor coupling and perform dynamic autotuning of the synchronous motor again (F1-69 = 12). Compare whether the auto-tuned back EMF (F1-12) is lower than the original back EMF. If yes, an exception occurs. Note: When the motor temperature increases, the back EMF decreases by less than 10%. If back EMF recovers after cooling, it is normal. | Analyze the specific demagnetization causes. Common causes include low carrier frequency, oscillation in speed control mode, and excessive motor back EMF and output current harmonic. If the preceding exceptions are not rectified, demagnetization may occur again even after the motor is replaced. | Mode<br>Manual<br>reset |
|        |                                                                           | Synchronous/<br>Asynchronous motor<br>parameters are not<br>auto-tuned in the<br>vector control mode<br>(SVC). | In the SVC control mode (F0-01 = 0), perform parameter auto-tuning.  Compare the parameters in group F1 to the default values to check whether auto-tuning has been performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Perform accurate parameter auto-tuning or download all auto-tuning parameters.                                                                                                                                                                                                                          |                         |
|        |                                                                           | Low carrier<br>frequency during<br>high-speed<br>operation<br>(To be continued)                                | Check whether the carrier frequency (A5-01) set for the motor during high-speed operation is higher than the output frequency x 12. If not, overcurrent may occur due to dissipated control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Increase the carrier frequency during high-speed motor control.     Calculate the derating rate based on the required carrier frequency (12 x output frequency) during model selection.                                                                                                                 |                         |

| Fault<br>Code | Name                         | Fault Cause                                                                                                                     | Confirmation Method                                                                                                                                                                                                                                                                                      | Solution                                                                                                                                                                                                                                               | Reset<br>Mode   |
|---------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E002.1        | Hardware<br>over-<br>current | (Continued) The motor is started during rotation (synchronous motor in SVC).                                                    | Before start, check whether the motor is rotating, especially check whether the load is heavy with large inertia. The time for the motor with such a load to coast to stop is long.                                                                                                                      | Set the start mode to flying start (d0-02 = 1), and then start the drive again.                                                                                                                                                                        | Manual<br>reset |
|               |                              | Oscillation caused<br>by overcurrent<br>(asynchronous<br>motors in V/f control<br>mode)                                         | Use the continuous oscilloscope function of the iFA software tool to check whether the actual excitation current (U6-25/L3224), actual torque current (U6-25/L3226), and operating frequency (U0-00) of the motor are oscillating. Under normal conditions, the fluctuation range does not exceed 10%.   | 1. Increase or decrease the V/f oscillation suppression gain (d2-23) properly and observe whether overcurrent is suppressed. 2. Change the motor control method to SVC (F0-01 = 0) and perform parameter auto-tuning.                                  |                 |
|               |                              | Overcurrent suppression parameters are improperly (asynchronous motor in V/f control mode).  (To be continued)                  | Ensure that overcurrent suppression is enabled (d2-26 = 1). Check whether the overcurrent suppression point (d2-27) and overcurrent suppression Kp/Ki (d2-28/d2-29) are too large or small.                                                                                                              | Decrease the overcurrent suppression setpoints Kp/Ki setting first. If the fault persists, increase the setpoint. (For high-power motors, reduce the overcurrent suppression Kp/Ki properly.)                                                          |                 |
| E002.1        | Hardware<br>over-<br>current | (Continued) Overvoltage suppression or undervoltage suppression parameters are set improperly (asynchronous motor in V/f mode). | Check whether overvoltage suppression (d1-54) or undervoltage suppression (d1-63) is enabled and observe whether overcurrent occurs in the overvoltage or undervoltage stage.                                                                                                                            | Adjust undervoltage suppression Kp/Ki (d1-66/d1-67) under undervoltage suppression. Adjust overvoltage suppression Kp/Ki (d1-57/d1-58) under overvoltage suppression. Decrease the setpoint first. If the fault persists, increase the setpoint again. | Manual<br>reset |
|               |                              | The value of the torque boost parameters (asynchronous motor in V/f control mode) are excessively high. (To be continued)       | When the torque boost mode is manual or manual+automatic, check whether the manual torque boost (d2-14) is set to an excessively high value and whether the stator resistance (F1-20) is auto-tuned. When the torque boost mode is automatic, check whether the stator resistance (F1-20) is auto-tuned. | If the manual torque boost (d2-14) is set to an excessively high value, decrease the manual torque boost (d2-14) and perform static partial auto-tuning of the asynchronous motor again (F1-69 = 1).                                                   |                 |

| Fault    | Name              | Fault Cause                               | Confirmation Method                                                           | Solution                                 | Reset  |
|----------|-------------------|-------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|--------|
| Code     |                   |                                           |                                                                               |                                          | Mode   |
| E002.1   | Hardware<br>over- | (Continued)                               | Check whether the deceleration time is too short. If the deceleration time is | Determine whether the                    | Manual |
|          | current           | V/f acceleration/<br>deceleration time is | too short, increase the deceleration                                          | acceleration/<br>deceleration time is a  | reset  |
|          | current           | too short                                 | ·                                                                             | value that must be set.                  |        |
|          |                   | (asynchronous                             | time gradually (by 5s every time).  Repeat the test to check whether the      | Otherwise, the                           |        |
|          |                   | motor in V/f control                      | fault persists. If the fault does not                                         | acceleration/                            |        |
|          |                   | mode).                                    | occur, the fault cause is excessively                                         | deceleration time (F0-48                 |        |
|          |                   | mode).                                    | low acceleration/deceleration time.                                           | to F0-49) can be                         |        |
|          |                   |                                           | tow deceleration, deceleration time.                                          | extended properly.                       |        |
|          |                   |                                           |                                                                               | Enable the overcurrent                   |        |
|          |                   |                                           |                                                                               | suppression function                     |        |
|          |                   |                                           |                                                                               | (d2-26=1). If the fault                  |        |
|          |                   |                                           |                                                                               | persists, decrease the                   |        |
|          |                   |                                           |                                                                               | setpoint first. If it is                 |        |
|          |                   |                                           |                                                                               | inactive, increase the                   |        |
|          |                   |                                           |                                                                               | setpoint again.                          |        |
|          |                   |                                           |                                                                               | Increase the manual                      |        |
|          |                   |                                           |                                                                               | torque boost value (d2-                  |        |
|          |                   |                                           |                                                                               | 14) appropriately.                       |        |
|          |                   |                                           |                                                                               | When multiple motors                     |        |
|          |                   |                                           |                                                                               | are started                              |        |
|          |                   |                                           |                                                                               | simultaneously, all                      |        |
|          |                   |                                           |                                                                               | motors can be braked                     |        |
|          |                   |                                           |                                                                               | with DC braking (d0-25)                  |        |
|          |                   |                                           |                                                                               | for the same duration to                 |        |
|          |                   |                                           |                                                                               | significantly reduce                     |        |
|          |                   |                                           |                                                                               | startup current shock.                   |        |
|          |                   |                                           |                                                                               | In operation conditions                  |        |
|          |                   |                                           |                                                                               | where the start/stop                     |        |
|          |                   |                                           |                                                                               | speed is fast, enable                    |        |
|          |                   |                                           |                                                                               | shutdown DC injection                    |        |
|          |                   |                                           |                                                                               | braking (d0-29 is not 0)                 |        |
|          |                   |                                           |                                                                               | to ensure that the shutdown DC injection |        |
|          |                   |                                           |                                                                               | braking active time (d0-                 |        |
|          |                   |                                           |                                                                               | 29) is active before the                 |        |
|          |                   |                                           |                                                                               | next start.                              |        |
|          |                   | Model-related                             | Check the nameplate of the drive to                                           | Set the drive model                      |        |
|          |                   | parameters are set                        | ensure the rated power/current/                                               | parameters (A3-02 to A3-                 |        |
|          |                   | incorrectly.                              | voltage of the drive (A3-02 to A3-04)                                         | 04) according to the                     |        |
|          |                   | meorrectly.                               | are consistent with those on the                                              | nameplate label of the                   |        |
|          |                   |                                           | nameplate.                                                                    | drive.                                   |        |
|          |                   | Motor parameters                          | '                                                                             |                                          |        |
|          |                   | Motor parameters                          | Check the nameplate of the motor to                                           | Set the motor rated                      |        |
|          |                   | are set improperly.                       | ensure the basic parameters of the motor (F1-00 to F1-12) are consistent      | parameters (F1-00 to F1-                 |        |
|          |                   |                                           | with those on the nameplate.                                                  | 12) according to the motor nameplate.    |        |
| <u> </u> |                   |                                           | with those on the nameptate.                                                  | motor nameptate.                         |        |

| Fault<br>Code | Name                         | Fault Cause                                                                                                                                                                      | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solution                                                                                                                                                                                                                                                                                                                                                  | Reset<br>Mode   |
|---------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E002.1        | Hardware<br>over-<br>current | The V/f curve voltage is excessively high (asynchronous motor V/f).                                                                                                              | When the V/f curve is multi-point V/f (d2-00 = 1), reduce the voltage at the point where the voltage/frequency is too large in the multi-point curve (d2-02 to d2-10) and observe whether the fault disappears. When the separated V/f curve is used (d2-00 = 10), set the frequency first. Then slowly try to increase the voltage. If the output voltage is lower than the voltage set upon fault when the output current reaches the rated value, the voltage set in the separated V/f mode is improper.                                                                                  | Reduce the voltage/ frequency ratio on the multi-point V/f curve to prevent it from being larger than the ratio on the linear V/f, resulting in the motor overexcitation. For V/f separation, set the voltage acceleration/ deceleration time (d2- 50/ d2 -51) that matches the frequency to avoid excessive voltage acceleration time or output voltage. | Manual<br>reset |
|               |                              | Braking resistor overcurrent                                                                                                                                                     | Braking resistor overcurrent occurs when the bus voltage increases to the actual operating voltage of the braking unit (A4-01) due to motor deceleration or speed fluctuation.  Remove the braking resistor and enable the drive to run again. Check whether overcurrent occurs again after the bus voltage increases. If not, the braking resistor is faulty. In this case, check the following:  1. Check whether the braking output is short-circuited.  2. Check whether the braking resistor is wired correctly.  3. Check whether the resistance of the braking resistor is too small. | Re-connect the braking resistor.     Replace with a braking resistor of higher resistance.                                                                                                                                                                                                                                                                |                 |
|               |                              | The SVC control system cannot track or adjust the reactive power stably at extremely low frequencies (about 0 Hz), leading to unstable system operation (synchronous motor SVC). | When the synchronous motor is in the SVC mode and the set speed (U0-01) is near 0, check whether violent feedback speed fluctuation, unusual motor noise, motor stall, or slightly continuous reverse rotation occurs. If yes, an exception occurs.                                                                                                                                                                                                                                                                                                                                          | Avoid the long-term operation in SVC mode at speeds close to 0.     Perform auto-tuning again (F1-69=12).     Enable IF control and set the tens of the low-speed processing mode (d0–85) to 1.  Ask for technical                                                                                                                                        |                 |
|               |                              | nardware fault                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | support.                                                                                                                                                                                                                                                                                                                                                  |                 |

| Fault<br>Code | Name                                                                                                         | Fault Cause                                                                                                                                                                                                                                                                                                                                     | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                 | Solution                                                                                                                                                                                                                                                                                                       | Reset<br>Mode   |
|---------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E002.3        | Phase-W<br>over-<br>current                                                                                  | Synchronous motor<br>demagnetization<br>(SVC)                                                                                                                                                                                                                                                                                                   | Record the current back EMF (F1-12), disassemble the motor coupling, and perform dynamic auto-tuning for the synchronous motor (F1-69 = 12) again. Check whether the newly auto-tuned back EMF is lower than the initial auto-tuned value. If yes, an exception occurs.  Note: When the motor temperature increases, the back EMF decreases by less than 10%. If the back EMF recovers after cooling, it is normal. | Analyze the specific demagnetization causes. Common causes include low carrier frequency, oscillation in speed control mode, and excessive motor back EMF and output current harmonic.  Note: If the preceding exceptions are not rectified, demagnetization may occur again even after the motor is replaced. | Manual<br>reset |
|               |                                                                                                              | Synchronous/<br>Asynchronous motor<br>parameters are not<br>auto-tuned in the<br>vector control mode<br>(SVC).                                                                                                                                                                                                                                  | In the SVC control mode (F0-01 = 0), perform parameter auto-tuning. Compare the parameters in group F1 to the default values to check whether auto-tuning has been performed.                                                                                                                                                                                                                                       | Perform accurate parameter auto-tuning or download all auto-tuning parameters.                                                                                                                                                                                                                                 |                 |
|               |                                                                                                              | Low carrier<br>frequency during<br>high-speed<br>operation                                                                                                                                                                                                                                                                                      | Check whether the carrier frequency set for the motor during high-speed operation is higher than the result of output frequency x 12. If no, control dissipation may result in overcurrent.                                                                                                                                                                                                                         | The carrier frequency of high-power machines is low by default. In this case, increase the carrier frequency during high-speed motor operation. Calculate derating according to the carrier frequency and select the model according to the derating coefficient.                                              |                 |
|               |                                                                                                              | The motor is started during rotation (synchronous motor in SVC).                                                                                                                                                                                                                                                                                | Before start, check whether the motor is rotating, especially check whether the load is heavy with large inertia.  The time for the motor with such a load to coast to stop is long.                                                                                                                                                                                                                                | Set the start mode to flying start (d0-02 = 1).                                                                                                                                                                                                                                                                |                 |
|               | Oscillation caused<br>by overcurrent<br>(asynchronous<br>motors in V/f control<br>mode)<br>(To be continued) | Use the continuous oscilloscope function in the commissioning software to check whether the actual excitation (U6-24/L3224), torque current (U6–25/L3226) and operating frequency (U0-00) of the motor are oscillating. The fluctuation range of the actual excitation/torque current of the motor does not exceed 10% under normal conditions. | Increase or decrease the V/f oscillation suppression gain (d2-23) properly.     Change the motor control method to SVC (F0-01 = 0). After parameter auto-tuning, the SVC mode applied.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                |                 |

| Fault  | Name    | Fault Cause          | Confirmation Method                     | Solution                   | Reset  |
|--------|---------|----------------------|-----------------------------------------|----------------------------|--------|
| Code   |         |                      |                                         |                            | Mode   |
| E002.3 | Phase-W | (Continued)          | Check whether overvoltage               | Adjust undervoltage        | Manual |
|        | over-   | Overvoltage          | suppression (d1-54) or undervoltage     | suppression Kp/Ki (d1-     | reset  |
|        | current | suppression or       | suppression (d1-63) is enabled and      | 66/d1-67) under            |        |
|        |         | undervoltage         | observe whether overcurrent occurs      | undervoltage               |        |
|        |         | suppression          | in the overvoltage or undervoltage      | suppression. Adjust        |        |
|        |         | parameters are set   | stage.                                  | overvoltage suppression    |        |
|        |         | improperly           |                                         | Kp/Ki (d1-57/d1-58)        |        |
|        |         | (asynchronous        |                                         | under overvoltage          |        |
|        |         | motor in V/f mode ). |                                         | suppression. Decrease      |        |
|        |         |                      |                                         | the setpoint first. If the |        |
|        |         |                      |                                         | fault persists, increase   |        |
|        |         |                      |                                         | the setpoint again.        |        |
|        |         | The value of the     | When the torque boost mode is           | If the manual torque       |        |
|        |         | torque boost         | manual or manual+automatic, check       | boost (d2-14) is set to an |        |
|        |         | parameters           | whether the manual torque boost (d2-    | excessively high value,    |        |
|        |         | (asynchronous        | 14) is set to an excessively high value | decrease the manual        |        |
|        |         | motor in V/f control | and whether the stator resistance (F1-  | torque boost (d2-14).      |        |
|        |         | mode) are            | 20) is auto-tuned. When the torque      | Perform static partial     |        |
|        |         | excessively high.    | boost mode is automatic, check          | auto-tuning of the         |        |
|        |         | (To be continued)    | whether the stator resistance (F1-20)   | asynchronous motor         |        |
|        |         |                      | is auto-tuned.                          | again (F1-69 = 1).         |        |

| Fault<br>Code | Name                        | Fault Cause                                                                                | Confirmation Method                                                                                                                                                                                                                                                                                         | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reset<br>Mode |
|---------------|-----------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E002.3        | Phase-W<br>over-<br>current | V/f acceleration/ deceleration time is too short (asynchronous motor in V/f control mode). | Check whether the deceleration time is too short. If the deceleration time is too short, increase the deceleration time gradually (by 5s every time).  Repeat the test to check whether the fault persists. If the fault does not occur, the fault cause is excessively low acceleration/deceleration time. | Determine whether the acceleration/ deceleration time is a value that must be set. Otherwise, the acceleration/ deceleration time (F0-48 to F0-49) can be extended properly. Enable the overcurrent suppression function (d2-26=1). If the fault persists, decrease the setpoint first. If it is inactive, increase the setpoint again. Increase the manual torque boost value (d2-14) appropriately. In operation conditions where the start/stop speed is fast, enable shutdown DC injection braking (d0-29 is not 0) to ensure that the shutdown DC injection braking active time (d0-29) is active before the next start. When multiple motors are started simultaneously, all motors can be braked with DC braking (d0-25) for the same duration to significantly reduce startup current shock. | Manual reset  |
|               |                             | Model-related parameters are set incorrectly.                                              | Check the nameplate of the drive to ensure the rated power/current/ voltage of the drive (A3-02/A3-03/A3-04) are consistent with those on the nameplate.                                                                                                                                                    | Set model-related parameters correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|               |                             | Motor parameters are set incorrectly. (To be continued)                                    | Check the nameplate of the motor to ensure the basic parameters of the motor (F1-00 to F1-12) are consistent with those on the nameplate.                                                                                                                                                                   | Set the motor rated parameters (F1-00 to F1-12) according to the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |

| Fault<br>Code | Name                        | Fault Cause                                                                                                                                                                      | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solution                                                                                                                                                                                                                                                                                                                                                                                                  | Reset<br>Mode   |
|---------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E002.3        | Phase-W<br>over-<br>current | The V/f curve voltage is excessively high (asynchronous motor V/f).                                                                                                              | When the V/f curve is multi-point V/f (d2-00 = 1), reduce the voltage at the point where the voltage/frequency is too large in the multi-point curve (d2-02 to d2-10) and observe whether the fault disappears.  When the separated V/f curve is used (d2-00 = 10), set the frequency first. Then slowly try to increase the voltage. If the output voltage is lower than the voltage set upon fault when the output current reaches the rated value, the voltage set in the separated V/f mode is improper.                     | 1. Reduce the voltage/<br>frequency ratio on the<br>multi-point V/f curve to<br>prevent it from being<br>larger than the ratio on<br>the linear V/f, resulting<br>in the motor<br>overexcitation. 2. For<br>separated V/f, set the<br>voltage acceleration/<br>deceleration time (d2-<br>50/d2-51) that matches<br>the frequency to avoid<br>excessive voltage<br>acceleration time or<br>output voltage. | Manual<br>reset |
|               |                             | Braking resistor overcurrent                                                                                                                                                     | Braking resistor overcurrent occurs when the bus voltage increases to the actual operating voltage of the braking unit (A4-01) due to motor deceleration or speed fluctuation.  Remove the braking resistor and enable the drive to run again. Check whether overcurrent occurs again after the bus voltage increases. If not, check the following:  1. Check whether the braking output is short-circuited.  2. Check whether the braking resistor is wired correctly.  3. The resistance of the braking resistor is too small. | Re-connect the braking resistor.     Select a higher resistance braking resistor.                                                                                                                                                                                                                                                                                                                         |                 |
|               |                             | The SVC control system cannot track or adjust the reactive power stably at extremely low frequencies (about 0 Hz), leading to unstable system operation (synchronous motor SVC). | When the synchronous motor is in the SVC mode and the set speed (U0-01) is near 0, the feedback speed fluctuates greatly and abnormal noise, motor stall, or slightly continuous reverse rotation occurs.                                                                                                                                                                                                                                                                                                                        | 1. Avoid the long-term operation in the SVC at speeds closed to 0. 2. Perform parameter auto-tuning again (F1-69 = 12). 3. Enable IF control and set the tens of the low-speed processing mode (d0-85) to 1.                                                                                                                                                                                              |                 |
|               |                             | Hardware fault                                                                                                                                                                   | Ask for technical support.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ask for technical support.                                                                                                                                                                                                                                                                                                                                                                                |                 |

| Fault<br>Code | Name                 | Fault Cause                                                                                                                                | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Solution                                                                                                                                                                                                                                                                                             | Reset<br>Mode |
|---------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E005.1        | Bus over-<br>voltage | In the power generation state, the braking recovery power is insufficient (synchronous motor/asynchronous motor in SVC mode).              | Method 1: Measure the resistance of the output side to ground with a tramegger. If it is not at the M $\Omega$ level, the resistance is abnormal. Method 2: Enable manual self-test (C2-04 = 1) and enable the drive to run. If a fault is reported, an exception occurs  Note: When the grid is an IT system, short circuit to ground cannot be detected during self-test. To enable this function, install an insulation monitor to the IT system.  1. Check whether the motor is in the generating state.  2. Use a multimeter to check whether the braking resistor power is too low.  3. Check whether the braking resistor is connected securely. | 1. Increase the deceleration time (F0-49) to reduce the generating power. 2. Replace with a braking resistor of higher power. 3. Re-connect the braking resistor. 4. Enable overvoltage suppression when the load allows (d1-54 = 2). Note: Active loads such as cranes does not support overvoltage | Manual reset  |
|               |                      | Sudden removal of<br>the load causes<br>speed overshoot<br>and generation<br>(synchronous<br>motor/<br>asynchronous motor<br>in SVC mode). | Check whether the actual motor speed increases significantly after the load is suddenly removed. If yes, an exception occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | suppression.  1. Increase the speed loop Kp (F2-02).  2. Add the speed loop Ti (F2-03). The recommended value is 2s.                                                                                                                                                                                 |               |

| Fault  | Name                 | Fault Cause                                                                                                                                                                                                                          | Confirmation Method                                                                                                                                                                                                                                                                                              | Solution                                                                                                                                                        | Reset           |
|--------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Code   |                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 | Mode            |
| E005.1 | Bus over-<br>voltage | (Continued) The value of the speed loop gain is too low, resulting in feedback power generation after feedback speed overshoot when the speed reference reaches the target value (synchronous motor/asynchronous motor in SVC mode). | Observe whether overvoltage occurs after the speed reaches the target value during acceleration.                                                                                                                                                                                                                 | 1. Increase the speed loop Kp (F2-02) and increase the speed loop Ti (F2-03) to 2s. 2. Enable S-curve (b7-00 = 1) to set the ramp acceleration end arc (F0-51). | Manual<br>reset |
|        |                      | Speed loop<br>parameter setpoints<br>too high (SVC)                                                                                                                                                                                  | Reduce the speed loop Kp (F2-02) to half the current value and set the speed loop Ti (F2-03) to 2s. Start running and observe whether the drive can run smoothly. If the fault persists, reduce the Kp to half the current value several times. If the fault still occurs, the fault is not caused by the cause. | Reduce the speed loop<br>Kp (F2-02) to half the<br>current value and set<br>the speed loop Ti (F2-03)<br>to 2s.                                                 |                 |
|        |                      | The motor is started during rotation (synchronous/ asynchronous motor in SVC).                                                                                                                                                       | Before start, check whether the motor is rotating, especially check whether the load is heavy with large inertia. The time for the motor with such a load to coast to stop is long.                                                                                                                              | Set the start mode to flying start (d0-02 = 1).                                                                                                                 |                 |

| Fault<br>Code | Name                       | Fault Cause                                                                             | Confirmation Method                                                                                                                                                                                                                                                                                                                       | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reset<br>Mode   |
|---------------|----------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E005.1        | 005.1 Bus over-<br>voltage | (Continued) Oscillation caused by overvoltage (asynchronous motors in V/f control mode) | Use the continuous oscilloscope function in the commissioning software to check whether the actual excitation (U6-24/L3224), torque current (U6-25/L3226) and operating frequency (U0-00) of the motor are oscillating. Under normal conditions, the actual excitation/torque current fluctuation range of the motor does not exceed 10%. | 1. Increase or decrease the V/f oscillation suppression gain (d2-23) properly and observe whether overcurrent is suppressed. 2. Change the motor control method to SVC (F0-01 = 0). After parameter auto-tuning, the SVC mode applied.                                                                                                                                                                                                                                                                                                                                   | Manual<br>reset |
|               |                            | The deceleration time is too short.                                                     | Check whether the deceleration time is too short. If the deceleration time is too short, increase the deceleration time gradually (by 5s every time).  Repeat the test to check whether the fault persists. If the fault does not occur, the fault cause is excessively low acceleration/deceleration time.                               | 1. Determine whether the acceleration/ deceleration time is a value that must be set. Otherwise, the acceleration/ deceleration time can be extended properly.  2. Enable overvoltage suppression (F2-39 = 1) for applications with low speed following requirements. For applications with low speed following requirements, install a braking resistor.  3. For applications where the braking resistor cannot be installed, increase the overexcitation current (SVC: d0-40, V/f: d0-41) properly. Enable vector overexcitation (d0-39 = 1) first during SVC control. |                 |
|               |                            | Model-related parameters are set incorrectly.                                           | Check the nameplate of the drive to ensure the rated power/current/ voltage of the drive (A3-02/A3-03/A3-04) are consistent with those on the nameplate.                                                                                                                                                                                  | Set model-related parameters correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |

| Fault<br>Code | Name                                                                                                                                                                                                                             | Fault Cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                 | Solution                                                                                                                                                                                                                                          | Reset<br>Mode   |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E005.1        | Bus over-<br>voltage                                                                                                                                                                                                             | (Continued) The starting voltage of the braking unit is too high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Check whether the effective action voltage of the braking unit (A4-01) reaches the overvoltage threshold (A3-57).                                                                                                                                                                                                                                                                   | The effective action voltage of the braking unit varies with the voltage level of the machine. Manual modification is not required under normal conditions. In extreme cases, reduce the action voltage of the braking unit (A4-00).              | Manual<br>reset |
|               |                                                                                                                                                                                                                                  | The input voltage is too high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Check whether the input voltage is within the normal range (380 V to 480 V).                                                                                                                                                                                                                                                                                                        | 1. Reduce the input voltage to a value within the normal range (380 V to 480 V). 2. Decrease the overvoltage suppression action voltage (F2-40) and the braking unit action voltage (A4-00).                                                      |                 |
|               |                                                                                                                                                                                                                                  | The overvoltage suppression parameters are set improperly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enable overvoltage suppression (d1-54 = 1) and check whether the overvoltage suppression Kp/Ki (d1-57/d1-58) is set to excessively low or high values (based on actual operating conditions).                                                                                                                                                                                       | Decrease the setpoint of<br>kp or ki first. If the fault<br>persists, increase the<br>setpoint again. In<br>addition, for large<br>inertia models, reduce<br>the setpoint further.<br>Adjust the overvoltage<br>suppression Kp/Ki (d1-<br>57/58). |                 |
|               | The synchronous motor reports a fault after overspeed or the synchronous motor coasts to stop after manual settings.  Synchronous motor overspeed The synchronous motor coasts to stop manually or to coasts to stop upon fault. | Check whether the output voltage (F1- $12 \times U0-00 \times 1.414$ ) of the synchronous motor exceeds the overvoltage threshold A3-57. If yes, interruption of the operation may result in overvoltage, leading to explosion of the drive.  Note: When the synchronous motor overspeed occurs, the output voltage (F1- $12 \times U0-00 \times 1.414$ ) can be much higher than the bus voltage. After the motor is interrupted, the field weakening current disappears and the U/V/W phase voltage increases dramatically in a short time, leading to back EMF short circuit in the output diode during switch-on in the reverse direction. | 1. Limit the speed upper limit by setting d1-03 (Digital setting of positive frequency upper limit) to a value lower than or equal to A3-57/(1.414 x F1-12).  2. Replace with a motor with a higher back EMF. Note: A motor with high back EMF can effectively reduce the output current. However, operating at a speed above the limit may result in damage caused by overvoltage. |                                                                                                                                                                                                                                                   |                 |

| Fault<br>Code | Name                  | Fault Cause                                                                                                  | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                     | Solution                                                                                                                                                                                                                                                                                                                                                                                              | Reset<br>Mode                                             |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| E009.1        | Bus under-<br>voltage | Input phase loss                                                                                             | Measure whether the line voltages<br>between RS, ST, and RT are<br>symmetrical at the mains input side.                                                                                                                                                                                                                                                                                                                 | Check whether the input<br>switches, contactors,<br>and wiring terminals are<br>abnormal and re-<br>connect them.                                                                                                                                                                                                                                                                                     | Auto<br>matic<br>reset<br>by<br>default.                  |
|               |                       | Power dip occurs<br>and the grid voltage<br>is unstable.                                                     | Check whether undervoltage occurs in other devices in the same cabinet at the same time.  Note: Undervoltage is mostly caused by power dip.                                                                                                                                                                                                                                                                             | In load scenarios such as wind turbines, water pumps, air compressors, and electric drums, enable undervoltage suppression (d1-63 = 1). Note: When undervoltage suppression is enabled (d1-63 = 1), a brief speed drop occurs during undervoltage suppression and the drive converts the motor kinetic energy into electrical energy to stabilize the bus voltage, preventing the undervoltage fault. | Switch<br>to<br>manual<br>reset<br>throug<br>h A3-<br>67. |
|               |                       | The input voltage is too low.  The undervoltage suppression parameters are set improperly. (To be continued) | 1. Check whether the input voltage is within the normal range (380 V to 480 V). 2. Check whether the upstream circuit breaker or contactor trips or cannot be closed.  1. Check whether undervoltage suppression (d1-63 = 1) is enabled and whether the undervoltage suppression Kp/Ki (d1-66/-67) are set to excessively high or low values.  2. During undervoltage suppression, undervoltage fault is triggered when | 1. Increase the input voltage to a value within the normal range. 2. Ensure that the upstream circuit breaker or contactor is normal.  1. Adjust the undervoltage suppression Kp/Ki (d1-66/67). Decrease the value. If it is invalid, increase the value.  2. If you need to run                                                                                                                      |                                                           |
|               |                       |                                                                                                              | the actual speed is lower than the minimum operating frequency (d1-72) of undervoltage suppression. In this case, the drive stops.                                                                                                                                                                                                                                                                                      | with a low speed,<br>modify the minimum<br>operating frequency (d1-<br>72) for undervoltage<br>suppression.                                                                                                                                                                                                                                                                                           |                                                           |

| Fault<br>Code | Name                  | Fault Cause                                                                                                                           | Confirmation Method                                                                                                                                                                                                                                                                                                                    | Solution                                                                        | Reset<br>Mode                                                       |
|---------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|
| E009.1        | Bus under-<br>voltage | Undervoltage occurs during motor oscillation  The pre-charge contactor is abnormal and the pre-charge resistor cannot be disconnected | Check whether the output torque (U0-06) and bus voltage (U0-02) are subject to large oscillation (fluctuation above 10%) in the same frequency as that of bus fluctuation.  Check whether the undervoltage fault occurs after power-on, whether the bus recovers after stop, and whether the undervoltage fault disappears after stop. | Rectify the motor oscillation.  Contact technical support to replace the relay. | Auto matic reset by default. Switch to manual reset throug h A3-67. |
|               |                       | Properly.  Hardware error (circuit board)                                                                                             |                                                                                                                                                                                                                                                                                                                                        | Ask for technical support.                                                      | -                                                                   |
| E009.3        | Pre-drive<br>timeout  | The input circuit is not connected properly.                                                                                          | Check whether cables are connected properly.                                                                                                                                                                                                                                                                                           | Re-connect the AC drive according to the wiring diagram.                        | Manual<br>reset                                                     |
|               |                       | The input voltage is excessively low.                                                                                                 | Check whether the input voltage is within the normal range (380 V to 480 V).                                                                                                                                                                                                                                                           | Increase the input voltage to a value within the normal range (380 V to 480 V). |                                                                     |
|               |                       | Hardware error (circuit board)                                                                                                        | If the input fault persists, the hardware may be damaged.                                                                                                                                                                                                                                                                              | Ask for technical support.                                                      |                                                                     |

| Fault<br>Code | Name           | Fault Cause                                                                                                                                                                                         | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reset<br>Mode |
|---------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E010.1        | Drive overload | The load is too heavy, or locked rotor occurs on the motor                                                                                                                                          | Scenario 1: When the asynchronous motor is overloaded, switch to V/f control (F0-01 = 2) and observe whether the output current is excessively high. If motor parameters are set properly, but overload still occurs during slow acceleration when starting with load in the V/f mode, then the load is too heavy.  Scenario 2: In high-speed operation in vector control, if the product of output torque (U0-06) and operating frequency (U0-00) is close to the output power (U0-05), but the output torque is large, then the load is too heavy.  Scenario 3: Check whether the brake releases normally. | In scenario 1, when the motor runs at low speed, increase the noload current (F1-30) properly and reduce the mutual inductance (F1-28). Ensure that the product of both is unchanged. For scenario 2, during low-speed overload of the synchronous motor, if a cam-pole motor is used, increase the MTPA tuning coefficient of the synchronous motor (d5-29) and observe whether the overall output current decreases. If overload occurs because the load in the high-speed field weakening zone is too heavy, increase the overmodulation coefficient (A5-06) to a value not exceeding 108%. For scenario 3, release the brake. If the fault persists are preceding measures are taken, use a drive with higher power rating. | Manual reset  |
|               |                | The SVC control system cannot track or adjust the reactive power stably at extremely low frequencies (about 0 Hz), leading to unstable system operation (synchronous motor SVC).  (To be continued) | When the synchronous motor is in the SVC mode and the set frequency (U0-01) is near 0, violent speed feedback fluctuation, unusual motor noise, motor stall, or slight reverse rotation occurs.                                                                                                                                                                                                                                                                                                                                                                                                              | Avoid the long-term operation in the SVC at speeds closed to 0.     Enable IF control and set the tens of the low-speed processing mode (d0-85) to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |

| Fault | Name                                                                                                                                | Fault Cause                                                                                                                                                                   | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                 | Solution                                                                                                                                                                                                                                                                                                | Reset           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Code  |                                                                                                                                     |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                         | Mode            |
|       | Drive<br>overload                                                                                                                   | Synchronous<br>frequency of the<br>asynchronous motor<br>is close to 0 Hz<br>during operation<br>(asynchronous<br>motor SVC).                                                 | The synchronous motor is connected to a generating load. The synchronous frequency (L3212) is close to 0 (within 0.5% fluctuation) and operation lasts for more than 10s.                                                                                                                                                                                                                                           | Avoid the long-term operation in the SVC mode at speeds near 0.                                                                                                                                                                                                                                         | Manual<br>reset |
|       |                                                                                                                                     | Synchronous motor demagnetization (SVC)                                                                                                                                       | Record the current back EMF (F1-12), disassemble the motor coupling, and perform dynamic auto-tuning for the synchronous motor (F1-69 = 12) again. Check whether the newly auto-tuned back EMF is lower than the initial auto-tuned value. If yes, an exception occurs.  Note: When the motor temperature increases, the back EMF decreases by less than 10%. If the back EMF recovers after cooling, it is normal. | Analyze the specific demagnetization causes. Common causes include low carrier frequency, oscillation in speed control mode, and excessive motor back EMF and output current harmonic. If the preceding exceptions are not rectified, demagnetization may occur again even after the motor is replaced. |                 |
|       | Synchronous/<br>Asynchronous motor<br>parameters are not<br>auto-tuned in the<br>vector control mode<br>(SVC).<br>(To be continued) | In the SVC control mode (F0-01 = 0), perform parameter auto-tuning. Compare the parameters in group F1 to the default values to check whether auto-tuning has been performed. | Perform accurate parameter auto-tuning or download all auto-tuning parameters.                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                         |                 |

| Fault<br>Code | Name     | Fault Cause                        | Confirmation Method                                                        | Solution                                | Reset<br>Mode |
|---------------|----------|------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|---------------|
| E010.1        | Drive    | (C +i )                            | Check whether the deceleration time                                        | Determine whether the                   |               |
| E010.1        | overload | (Continued) V/f acceleration/      | is too short. If the deceleration time is                                  |                                         | Manual        |
|               | overtoau | deceleration time is               | too short, increase the deceleration                                       | acceleration/<br>deceleration time is a | reset         |
|               |          | too short                          | · ·                                                                        | value that must be set.                 |               |
|               |          |                                    | time gradually (by 5s every time).                                         |                                         |               |
|               |          | (asynchronous motor in V/f control | Repeat the test to check whether the fault persists. If the fault does not | Otherwise, the                          |               |
|               |          | '                                  | · '                                                                        | acceleration/                           |               |
|               |          | mode).                             | occur, the fault cause is excessively                                      | deceleration time (F0-48                |               |
|               |          | (To be continued)                  | low acceleration/deceleration time.                                        | to F0-49) can be                        |               |
|               |          |                                    |                                                                            | extended properly.                      |               |
|               |          |                                    |                                                                            | Enable the overcurrent                  |               |
|               |          |                                    |                                                                            | suppression function                    |               |
|               |          |                                    |                                                                            | (d2-26=1). If the fault                 |               |
|               |          |                                    |                                                                            | persists, decrease the                  |               |
|               |          |                                    |                                                                            | setpoint first. If it is                |               |
|               |          |                                    |                                                                            | inactive, increase the                  |               |
|               |          |                                    |                                                                            | setpoint again.                         |               |
|               |          |                                    |                                                                            | Increase the manual                     |               |
|               |          |                                    |                                                                            | torque boost value (d2-                 |               |
|               |          |                                    | 14) appropriately.                                                         |                                         |               |
|               |          |                                    |                                                                            | In operation conditions                 |               |
|               |          |                                    |                                                                            | where the start/stop                    |               |
|               |          |                                    |                                                                            | speed is fast, enable                   |               |
|               |          |                                    |                                                                            | shutdown DC injection                   |               |
|               |          |                                    |                                                                            | braking (d0-29 is not 0)                |               |
|               |          |                                    |                                                                            | to ensure that the                      |               |
|               |          |                                    |                                                                            | shutdown DC injection                   |               |
|               |          |                                    |                                                                            | braking active time (d0-                |               |
|               |          |                                    |                                                                            | 29) is active before the                |               |
|               |          |                                    |                                                                            | next start.                             |               |
|               |          |                                    |                                                                            | When multiple motors                    |               |
|               |          |                                    |                                                                            | are started                             |               |
|               |          |                                    |                                                                            | simultaneously, all                     |               |
|               |          |                                    |                                                                            | motors can be braked                    |               |
|               |          |                                    |                                                                            | with DC braking (d0-25)                 |               |
|               |          |                                    |                                                                            | for the same duration to                |               |
|               |          |                                    |                                                                            | significantly reduce                    |               |
|               |          |                                    |                                                                            | ,                                       |               |
|               |          |                                    |                                                                            | startup current shock.                  |               |

| Fault<br>Code | Name              | Fault Cause                                                                                             | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Solution                                                                                                                                                                                                                                                                                                                                                 | Reset<br>Mode   |
|---------------|-------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E010.1        | Drive<br>overload | The V/f curve voltage is excessively high (asynchronous motor V/f).                                     | When the V/f curve is multi-point V/f (d2-00 = 1), reduce the voltage at the point where the voltage/frequency is too large in the multi-point curve (d2-02 to d2-10) and observe whether the fault disappears.  When the separated V/f curve is used (d2-00 = 10), set the frequency first.  Then slowly try to increase the voltage. If the output voltage is lower than the voltage set upon fault when the output current reaches the rated value, the voltage set in the separated V/f mode is improper. | Reduce the voltage/ frequency ratio on the multi-point V/f curve to prevent it from being larger than the ratio on the linear V/f, resulting in the motor overexcitation. For V/f separation, set the voltage acceleration/ deceleration time (d2- 50/ d2-51) that matches the frequency to avoid excessive voltage acceleration time or output voltage. | Manual<br>reset |
|               |                   | The value of the torque boost parameters (asynchronous motor in V/f control mode) are excessively high. | When the torque boost mode is manual or manual+automatic, check whether the manual torque boost (d2-14) is set to an excessively high value and whether the stator resistance (F1-20) is auto-tuned.  When the torque boost mode is automatic, check whether the stator resistance (F1-20) is auto-tuned.                                                                                                                                                                                                     | If the manual torque boost (d2-14) is set to an excessively high value, decrease the manual torque boost (d2-14). Perform static partial auto-tuning of the asynchronous motor again (F1-69 = 1).                                                                                                                                                        |                 |
|               |                   | The motor is started during rotation (synchronous/ asynchronous motor in SVC).                          | Before start, check whether the motor is rotating, especially check whether the load is heavy with large inertia.  The time for the motor with such a load to coast to stop is long.                                                                                                                                                                                                                                                                                                                          | Set the start mode to flying start (d0-02 = 1).                                                                                                                                                                                                                                                                                                          |                 |
|               |                   | V/f oscillation<br>overload<br>(asynchronous<br>motor V/f)<br>(To be continued)                         | Use the continuous oscilloscope function in the commissioning software to check whether the actual excitation (U6-24/L3224), torque current (U6-25/L3226) and operating frequency (U0-00) of the motor are oscillating. Under normal conditions, the actual excitation/torque current fluctuation range of the motor does not exceed 10%.                                                                                                                                                                     | Increase or decrease the V/f oscillation suppression gain (d2-23) properly.     Change the motor control method to SVC (F0-01 = 0). After parameter auto-tuning, the SVC mode applied.                                                                                                                                                                   |                 |

| Fault<br>Code | Name           | Fault Cause                                                                                 | Confirmation Method                                                                                                                                                                                                                                                                                                                      | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reset<br>Mode |
|---------------|----------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E010.1        | Drive overload | (Continued) Synchronous motor magnetic pole angle auto-tuning error (synchronous motor SVC) | When the motor rotates freely, select "Pre-positioning start" (d0-71 = 3) to check whether the motor starts normally. When the motor does not rotate freely, check whether the motor Lq/Ld (F1-34/F1-32) is lower than 1.5. Check whether the motor used is a synchronous motor with squirrel cage.  Check the nameplate of the motor to | When the motor rotates freely, the motor rotates slightly at the start of pre-positioning. It is recommended to use this start mode if the process will not be affected by this mode. When the motor cannot rotate freely and Lq/Ld (F1-34/F1-32) of the motor is lower than 1.5, select voltage pulse start mode (d0-71 = 0) and increase the synchronous motor initial position detection current (d0-75). Otherwise, select high-frequency injection start mode (d0-71 = 1), and set the initial position compensation angle (d0-76) to 180 and operate for several times. For synchronous motors with squirrel cage, reverse rotation may occur under inaccurate auto-tuned pole position. It is recommended to apply the V/f mode for asynchronous motors. Set the motor rated | Manual reset  |
|               |                | parameters properly.                                                                        | ensure the basic parameters of the motor (F1-00 to F1-12) are consistent with those on the nameplate.                                                                                                                                                                                                                                    | parameters (F1-00 to F1-<br>12) according to the<br>motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|               |                | The power rating of<br>the AC drive is too<br>low.<br>(To be continued)                     | Check whether a low-overload model is used for high-overload applications or a low-power drive is used to drive a high-power motor.                                                                                                                                                                                                      | Use a drive with higher power rating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |

| Fault<br>Code | Name                            | Fault Cause                                                                                                                                                                                    | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Solution                                                                                                                                                                                                                                                                                                                                                                                                               | Reset<br>Mode |
|---------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E010.1        | Drive<br>overload               | The synchronous motor reports a fault after overspeed or the synchronous motor coasts to stop after manual settings.  Derated operation applies due to long-term operation at low frequencies. | When the synchronous motor overspeed occurs, the value of back EMF (F1-12) x operating frequency (U0-00) x 1.414 is much higher than the bus voltage. After the motor is interrupted, the field weakening current disappears and the U/V/W phase voltage increases dramatically in a short time. This causes the output diode to energize in the reverse direction and back EMF short circuit. If the value of back EMF (F1-12) x operating frequency (U0-00) x 1.414 is higher than the overvoltage threshold, operation interruption may cause overvoltage of the AC drive and may damage the drive.  Check whether the current operating frequency is 0 Hz to 5 Hz at low frequency. If yes, the system is in the low-frequency derating range. (In this | Set the positive frequency upper limit (d1-03) to the result of overvoltage threshold (A3-57)/(1.414 x back EMF of synchronous motor). Keep the maximum operating speed below this limit. Select the motor type properly. A motor with high back EMF can effectively reduce the output current. However, running at a speed above the limit may result in overvoltage or damage. Replace with a drive of higher power. | Manual reset  |
|               |                                 |                                                                                                                                                                                                | range, the AC drive power is lower than its rated power.) Note 1: During low-frequency operation, large fluctuation in IGBT temperature may easily occur, resulting in thermal stress and damage the IGBT. Note 2: When the frequency is in the low frequency range from 0 Hz to 5 Hz, the derating is reduced from 20% to 0%. Check the nameplate of the drive to                                                                                                                                                                                                                                                                                                                                                                                          | Set model-related                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|               | parameters are set incorrectly. | ensure the rated power/current/<br>voltage of the drive (A3-02/A3-03/A3-<br>04) are consistent with those on the<br>nameplate.                                                                 | parameters correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
|               |                                 | Derating due to excessively high carrier frequency                                                                                                                                             | Setting the carrier frequency (A5-01) to a value higher than the default can result in derating of the output with load.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Set a proper carrier frequency. If the high carrier frequency output capability is insufficient, it is recommended to use a drive with higher power.                                                                                                                                                                                                                                                                   |               |

| Fault<br>Code | Name              | Fault Cause                                               | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reset<br>Mode |
|---------------|-------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E011.1        | Motor<br>overload | The load is too heavy.                                    | Scenario 1: When the asynchronous motor is overloaded, switch to V/f control (F0-01 = 2) and observe whether the output current is excessively high. If motor parameters are set properly, but overload still occurs during slow acceleration when starting with load in the V/f mode, then the load is too heavy.  Scenario 2: In high-speed operation in vector control, if the product of output torque (U0-06) and operating frequency (U0-00) is close to the output power (U0-05), but the output torque is large, then the load is too heavy.  Scenario 3: Check whether the brake releases normally. | In scenario 1, when the motor runs at low speed, increase the noload current (F1-30) properly and reduce the mutual inductance (F1-28). Ensure that the product of both is unchanged. For scenario 2, during low-speed overload of the synchronous motor, if a cam-pole motor is used, increase the MTPA tuning coefficient of the synchronous motor (d5-29) and observe whether the overall output current decreases. If overload occurs because the load in the high-speed field weakening zone is too heavy, increase the overmodulation coefficient (A5-06) to a value not exceeding 108%. For scenario 3, release the brake. If the fault persists are preceding measures are taken, use a drive with higher power rating. | Manual reset  |
|               |                   | Synchronous motor demagnetization (SVC) (To be continued) | Record the current back EMF (F1-12), disassemble the motor coupling, and perform dynamic auto-tuning for the synchronous motor (F1-69 = 12) again. Check whether the newly auto-tuned back EMF is lower than the initial auto-tuned value. If yes, an exception occurs.  Note: When the motor temperature increases, the back EMF decreases by less than 10%. If the back EMF recovers after cooling, it is normal.                                                                                                                                                                                          | Analyze the specific demagnetization causes. Common causes include low carrier frequency, oscillation in speed control mode, and excessive motor back EMF and output current harmonic. If the preceding exceptions are not rectified, demagnetization may occur again even after the motor is replaced.                                                                                                                                                                                                                                                                                                                                                                                                                         |               |

| Fault<br>Code | Name              | Fault Cause                                                                           | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solution                                                                                                                                                               | Reset<br>Mode   |
|---------------|-------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| E011.1        | Motor<br>overload | Set motor<br>parameters<br>properly.                                                  | Check the nameplate of the motor to ensure the basic parameters of the motor (F1-00 to F1-12) are consistent with those on the nameplate.                                                                                                                                                                                                                                                                                                           | Set the motor rated parameters (F1-00 to F1-12) according to the motor nameplate.                                                                                      | Manual<br>reset |
|               |                   | The input voltage is too low.                                                         | Check whether the input voltage meets the design requirements (380 V models: 380 V to 480 V). Check whether the upstream circuit breaker or contactor trips or cannot be closed.                                                                                                                                                                                                                                                                    | Increase the input voltage to a value within the normal range. Ensure that the inlet switch is normal.                                                                 |                 |
|               |                   | The motor overload protection coefficient (d1-46) is set to an excessively low value. | /                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Increase the motor overload protection coefficient (d1-46).     If the fault persists after long-term operation, switch off the motor overload protection (d1-45 = 0). |                 |
| E013.1        | U phase<br>loss   | The output cables of the drive are connected improperly.                              | Check whether the output cables of the drive are connected properly.                                                                                                                                                                                                                                                                                                                                                                                | Re-connect the output circuit of the AC drive.                                                                                                                         | Manual<br>reset |
|               |                   | The output contactor is faulty or trips.                                              | Check whether the output contactor is disconnected and whether the circuit trips.                                                                                                                                                                                                                                                                                                                                                                   | Close the output contactor or brake.                                                                                                                                   |                 |
|               |                   | Short circuit<br>(ground)                                                             | Method 1: Measure the resistance of the output side to ground with a tramegger. If it is not at the M $\Omega$ level, the resistance is abnormal. Method 2: Enable manual self-test (C2-04 = 1) and enable the drive to run. If a fault is reported, an exception occurs Note: When the grid is an IT system, short circuit to ground cannot be detected during self-test. To enable this function, install an insulation monitor to the IT system. | Check the short circuit to ground part. Replace the UVW output cables or motor.                                                                                        |                 |
|               |                   | The motor winding is unbalanced.                                                      | Measure the phase-to-phase resistance between UV, UW, and VW phases of the motor with a multimeter to check whether they are equal.                                                                                                                                                                                                                                                                                                                 | Repair or replace the three-phase winding of the motor.                                                                                                                |                 |

| Fault<br>Code | Name            | Fault Cause                                              | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                | Solution                                                                        | Reset<br>Mode |
|---------------|-----------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|
| E013.2        | V phase<br>loss | The output cables of the drive are connected improperly. | Check whether the output cables of the drive are connected properly.                                                                                                                                                                                                                                                                                                                                                                               | Re-connect the output circuit of the AC drive.                                  | Manual        |
|               |                 | The output contactor is faulty or trips.                 | Check whether the output contactor is disconnected and whether the circuit trips                                                                                                                                                                                                                                                                                                                                                                   | Close the output contactor or brake.                                            |               |
|               |                 | Short circuit<br>(ground)                                | Method 1: Measure the resistance of the output side to ground with a tramegger. If it is not at the $M\Omega$ level, the resistance is abnormal. Method 2: Enable manual self-test (C2-04 = 1) and enable the drive to run. If a fault is reported, an exception occurs Note: When the grid is an IT system, short circuit to ground cannot be detected during self-test. To enable this function, install an insulation monitor to the IT system. | Check the short circuit to ground part. Replace the UVW output cables or motor. |               |
|               |                 | The motor winding is unbalanced.                         | Measure the phase-to-phase resistance between UV, UW, and VW phases of the motor with a multimeter to check whether they are equal.                                                                                                                                                                                                                                                                                                                | Repair or replace the three-phase winding of the motor.                         |               |

| Fault  | Name             | Fault Cause                                              | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                | Solution                                                                        | Reset<br>Mode   |
|--------|------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|
| Code   |                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                 |
| E013.3 | W phase<br>loss  | The output cables of the drive are connected improperly. | Check whether the output cables of the drive are connected properly.                                                                                                                                                                                                                                                                                                                                                                               | Re-connect the output circuit of the AC drive.                                  | Manual<br>reset |
|        |                  | The output contactor is faulty or trips.                 | Check whether the output contactor is disconnected and whether the circuit trips.                                                                                                                                                                                                                                                                                                                                                                  | Close the output contactor or brake.                                            |                 |
|        |                  | Short circuit<br>(ground)                                | Method 1: Measure the resistance of the output side to ground with a tramegger. If it is not at the $M\Omega$ level, the resistance is abnormal. Method 2: Enable manual self-test (C2-04 = 1) and enable the drive to run. If a fault is reported, an exception occurs Note: When the grid is an IT system, short circuit to ground cannot be detected during self-test. To enable this function, install an insulation monitor to the IT system. | Check the short circuit to ground part. Replace the UVW output cables or motor. |                 |
|        |                  | The motor winding is unbalanced.                         | Measure the phase-to-phase resistance between UV, UW, and VW phases of the motor with a multimeter to check whether they are equal.                                                                                                                                                                                                                                                                                                                | Repair or replace the three-phase winding of the motor.                         |                 |
| E014.1 | Drive<br>overtem | Over-high ambient temperature                            | Measure the ambient temperature to check whether it is higher than 50°C.                                                                                                                                                                                                                                                                                                                                                                           | Lower the ambient temperature.                                                  | Manual<br>reset |
|        | perature         | Air filter blocked                                       | Check whether the air filter of the fan is blocked.                                                                                                                                                                                                                                                                                                                                                                                                | Clean the air filter.                                                           |                 |
|        |                  | The fan is damaged.                                      | After cooling down, start the AC drive and observe whether the fan rotates.                                                                                                                                                                                                                                                                                                                                                                        | Replace the fan.                                                                |                 |
|        |                  | The thermistor is damaged                                | Contact the agent or Inovance for technical support.                                                                                                                                                                                                                                                                                                                                                                                               | Ask for technical support.                                                      |                 |
|        |                  | The module is damaged.                                   | The fault persists after the preceding measures are taken.                                                                                                                                                                                                                                                                                                                                                                                         | Ask for technical support.                                                      |                 |

| Fault<br>Code                        | Name                                           | Fault Cause                                                                                           | Confirmation Method                                                                                                                                                                                                                                                                                             | Solution                                                                                                                                                                  | Reset<br>Mode |
|--------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E160.1<br>L160.1<br>N160.1<br>A160.1 | Modbus-<br>RTU<br>communi<br>cation<br>timeout | Ambient interference exists.  The baud rate and data format of the master and slave are inconsistent. | Check whether the RS485 communication cable is correctly connected.  Check whether communication parameters such as Modbus local address (n2-02), Modbus baud rate (n2-00), and Modbus data format (n2-01) are set correctly. The baud rate and data format set by the host controller and the AC drive must be | Connect the 485 communication cable.  Ensure that the baud rate, data format, and station number set by the host controller and those set in the AC drive are consistent. | Auto          |
|                                      |                                                | The master does not send request data to the slave within the                                         | consistent. The station number must be unique. Otherwise, communication can fail.  1. Check whether the master configures data request commands for the slave that reports errors.                                                                                                                              | Ensure that the master configures data request command for                                                                                                                |               |
|                                      |                                                | timeout period.                                                                                       | Check whether the values of the Modbus communication timeout (n2-04) and the PLC communication cycle are proper. The Modbus communication timeout (n2-04) must be greater than the PLC communication cycle.                                                                                                     | the slave that reports errors.  2. Ensure that the value of the Modbus communication timeout (n2-04) is higher than the PLC communication cycle.                          |               |

| Fault<br>Code                        | Name                                                        | Fault Cause                                                                      | Confirmation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solution                                                                                                                                                                                                                                                                         | Reset<br>Mode |
|--------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| E165.1<br>L165.1<br>N165.1<br>A165.1 | EtherNet/<br>IP<br>Ethernet<br>communi<br>cation<br>timeout | The power supply of the device is unstable or the network topology is disturbed. | 1. Check whether the power supply of the equipment is stable. Measure whether the bus voltage is within the operating voltage range. If not, check whether a high-power device is using the same power supply. The same power supply is used for high-power devices. This may cause voltage instability. In this case, an independent power supply is required.  2. Check whether the communication cable and power cable are routed through different routes. If the communication cable is routed together with the power cable, interference may occur. It is recommended to route the cables through different routes according to the cable routing specifications.                        | Ensure that no high-power devices share the same power supply. Use an independent power supply.     Route the communication cables and power cables through different routes.     If the voltage is still unstable after preceding measures are taken, replace the power supply. | Autoreset     |
|                                      |                                                             | A fault occurs on the network device.                                            | 1. Ping the device continuously, check whether the device responds and whether the response delay is greater than the set communication service cycle.  If no response or response delay is greater than the communication service cycle, the network equipment may be faulty. Use the step-by-step ping method to locate the faulty device and replace it. If the response delay is lower than the communication service cycle, check whether the delay fluctuation is stable or too large. If it is unstable or too large, the network equipment may be faulty or the network bandwidth may be insufficient.  2. Check whether the network bandwidth is sufficient with the command ifconfig. | 1. Replace the network device that is faulty in the network topology. 2. If the network bandwidth is insufficient, reduce the number of nodes in the network topology or upgrade the network bandwidth.                                                                          |               |
|                                      |                                                             | The controller is faulty.                                                        | Check whether the controller works properly and whether there is any data sent. If not, the controller is abnormal and needs to be replaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Replace the controller.                                                                                                                                                                                                                                                          |               |

| Fault                                | Name                                                            | Fault Cause                                                                                                                    | Confirmation Method                                                                                                                                                                                                                 | Solution                                                                                                                                                                                                | Reset         |
|--------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Code                                 |                                                                 |                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                         | Mode          |
| E165.4<br>L165.4<br>N165.4<br>A165.4 | Ethernet/<br>IP IP<br>conflict                                  | IP address conflict exists in the communication network.                                                                       | Disconnect the device from the network and check whether the fault disappears. If there is no fault when the device is not connected to the network, the fault is reported after connection. The IP address of this                 | Modify the IP address of the conflict device.                                                                                                                                                           | Auto<br>reset |
|                                      |                                                                 |                                                                                                                                | device conflicts with other devices in the network.                                                                                                                                                                                 |                                                                                                                                                                                                         |               |
| E166.1<br>L166.1<br>N166.1<br>A166.1 | PROFINET communi cation times out.                              | The master or slave is disconnected during communication.  The mapping                                                         | The keypad displays the fault code.  The operating panel displays the fault                                                                                                                                                         | Check the communication lines between the master and slave.  Modify the illegal                                                                                                                         | Auto<br>reset |
| L166.3<br>N166.3<br>A166.3           | mapping<br>address<br>error                                     | configured during configuration is illegal.                                                                                    | code and the master cannot establish data interaction with the slave.                                                                                                                                                               | mapping address.                                                                                                                                                                                        | reset         |
| E167.1<br>L167.1<br>N167.1<br>A167.1 | EtherCAT<br>Sync is<br>lost.                                    | The slave hardware (for example, the ESC register) causes the synchronization signal to be lost and the drive runs improperly. | Observe whether the indicator (difference between SYNC and IRQ phases) is larger than the synchronization cycle set by the master through the continuous oscilloscope function of Inovance software, If yes, it indicates an error. | Replace the AC drive or contact technical support.                                                                                                                                                      | Auto<br>reset |
| E167.2<br>L167.2<br>N167.2<br>A167.2 | EtherCAT<br>link lost                                           | The physical connection of the data link is unstable or the process data is lost due to plug-in/plug-out of the network cable. | When the device is not powered on again, view the value of the link loss register through the software tool of the master. If it is not zero or the value increases continuously, the process data is lost.                         | Check whether the network cable of the drive is connected reliably. Check whether the network cable is loose due to strong vibration in the field. Ensure that the network cable is connected securely. | Auto<br>reset |
| E167.7<br>L167.7<br>N167.7<br>A167.7 | The number or length of EtherCAT PDO mapping exceeds the limit. | The master configuration information is incorrect.                                                                             | Check whether the PDO is configured correctly.                                                                                                                                                                                      | Configure the number of mapped PDOs and bytes correctly. You can configure a maximum of 16 PDOs per group, and a maximum of 32 bytes per group of PDOs.                                                 | Auto<br>reset |

| Fault  | Name       | Fault Cause           | Confirmation Method                      | Solution                 | Reset |
|--------|------------|-----------------------|------------------------------------------|--------------------------|-------|
| Code   |            |                       |                                          |                          | Mode  |
| E167.8 | EtherCAT   | The data frame is     | If master communication is not           | Check whether link loss  | Auto  |
| L167.8 | process    | lost at the upstream  | recovered, view the synchronous loss     | occurs on the upstream   | reset |
| N167.8 | data       | station and the       | counter value (n4-30) of the drive.      | station. Check that the  |       |
| A167.8 | reception  | upstream station is   | When a fault occurs, the value is not 0. | wiring is correct.       |       |
|        | timeout    | faulty.               |                                          |                          |       |
|        |            | The performance of    | Observe the SYNC and Irq phases          | Check whether the CPU    |       |
|        |            | the master is poor,   | through the online oscilloscope          | operation load of the    |       |
|        |            | the jitter of the IRQ | function in the software tool of the     | master is too large. You |       |
|        |            | exceeds the set       | drive. When a fault occurs, the phase    | can optimize load        |       |
|        |            | value x               | is greater than or equal to the          | reduction of the master  |       |
|        |            | communication         | synchronization loss threshold x         | by reducing the          |       |
|        |            | cycle.                | communication cycle.                     | communication time       |       |
|        |            |                       |                                          | and setting a high       |       |
|        |            |                       |                                          | synchronization loss     |       |
|        |            |                       |                                          | threshold.               |       |
| N194.1 | STO1 and   | Both STO1 and         | Check whether the 24 V power supply      | 1. Check whether the     | Auto  |
|        | STO2 are   | STO2 are              | of the STO is normal.                    | wiring is correct.       | reset |
|        | disconnect | disconnected.         |                                          | 2. Contact the agent or  |       |
|        | ed.        |                       |                                          | Inovance for technical   |       |
|        |            |                       |                                          | support.                 |       |

# **8 Commissioning Parameters**

#### 8.1 Control Method and Control Mode

| Parame           | Name                  | Default | Value Range                                                                                                                                                                                                                          |
|------------------|-----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ter              |                       |         |                                                                                                                                                                                                                                      |
| F0-01<br>(d0-00) | Motor control method  | 2       | 0: SVC<br>2: V/f                                                                                                                                                                                                                     |
| F0-02<br>(d0-01) | Motor control<br>mode | 0       | 0: Speed control 1: Torque control 3: DI1 4: DI2 5: DI3 (active only for MD630S) 6: DI4 (active only for MD630S) 7: DI5 (active only for MD630S) 8: DI6 (active only for MD630S) 9: DI7 (active only for MD630S) Others: B connector |

## 8.2 Parameters Related to Frequency Settings

| Parameter        | Parameter Name                    | Default  | Value Range                                                                                                                                                                          |
|------------------|-----------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F0-25<br>(A0-70) | Frequency decimal place           | 2        | 1: 1 decimal places<br>2: 2 decimal places                                                                                                                                           |
| F0-29<br>(b5-00) | Main frequency<br>source          | 0        | 0: Set by the parameter (F0-30) 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector |
| F0-30<br>(b5-01) | Digital setting of main frequency | 50.00 Hz | 0.00 to A2-17                                                                                                                                                                        |

| Parameter        | Parameter Name                            | Default | Value Range                                                                                                                                                                      |
|------------------|-------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F0-31<br>(b5-02) | Auxiliary frequency source                | 0       | 0: Disabled 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector                 |
| F0-32<br>(b5-03) | Main and auxiliary<br>frequency operation | 0       | 0: Main frequency + auxiliary frequency 1: Main frequency - auxiliary frequency 2: Max ( Main ,  Auxiliary ) 3: Min( Main ,  Auxiliary ) 4: Main frequency x auxiliary frequency |
| F0-33<br>(b5-04) | Auxiliary frequency source                | 0       | 0: Disabled 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector                 |
| F0-34<br>(b5-05) | Main frequency gain factor source         | 0       | 0: 100% 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector                     |

#### 8.3 Parameters Related to Multi-reference

| Param.           | Parameter Name                 | Default | Value Range                                                                                                                                                                                    |
|------------------|--------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F0-38<br>(b8-08) | Multi-reference 0 setting mode | 0       | 0: Set by the parameter (F0-39) 1: Al1 2: Al2 4: HDI pulse (valid only for MD630S) 5: PID 6: Digital setting of main frequency (b5-01/b6-01) for the current valid channel Others: F connector |
| F0-39<br>(b8-09) | Multi-reference 0              | 0.0     | b8-43 to b8-42                                                                                                                                                                                 |
| F0-40<br>(b8-10) | Multi-reference 1              | 0.0     | b8-43 to b8-42                                                                                                                                                                                 |
| F0-41<br>(b8-11) | Multi-reference 2              | 0.0     | b8-43 to b8-42                                                                                                                                                                                 |
| F0-42<br>(b8-12) | Multi-reference 3              | 0.0     | b8-43 to b8-42                                                                                                                                                                                 |

#### 8.4 Parameters Related to V/f Curve

When F0-01 (Motor control mode) = 2 (V/f), V/f-related parameters need to be set. V/f control is divided into V/f curve and V/f separation modes, and V/f curve includes multiple selections, such as linear V/f and multi-point V/f curve.

| Item  | Parameter Name                                     | Default | Value Range                                                          |
|-------|----------------------------------------------------|---------|----------------------------------------------------------------------|
| d2-00 | V/f curve type                                     | 0       | 0: Linear V/f curve<br>1: Multi-point V/f curve<br>10: Separated V/f |
| d2-02 | Frequency point 1 on a multi-point V/f curve       | 0.0 Hz  | 0-d2-03                                                              |
| d2-03 | Frequency point 2<br>on a multi-point V/f<br>curve | 0.0 Hz  | d2-02 to d2-04                                                       |
| d2-04 | Frequency point 3 on a multi-point V/f curve       | 0.0 Hz  | d2-03 to 600.0 Hz                                                    |
| d2-08 | Voltage point 1 on a multi-point V/f curve.        | 0.0V    | 0.0 V to 1000.0 V                                                    |

| Item  | Parameter Name                                    | Default | Value Range                                                                                                                                                                |
|-------|---------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d2-09 | Voltage point 2 on a multi-point V/f curve.       | 0.0V    | 0.0 V to 1000.0 V                                                                                                                                                          |
| d2-10 | Voltage point 3 on a multi-point V/f curve.       | 0.0V    | 0.0 V to 1000.0 V                                                                                                                                                          |
| d2-47 | Upper limit of V/f separation voltage             | 100.0%  | 50.0%–200.0%                                                                                                                                                               |
| d2-48 | Voltage source of V/f separation                  | 0       | O: Set by the parameter (d2-49) 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication Others: F connector |
| d2-49 | Digital setting of V/f separation voltage         | OV      | 0-C4-03                                                                                                                                                                    |
| d2-50 | Voltage acceleration<br>time of V/f<br>separation | 0.0s    | 0.0s to 1000.0s                                                                                                                                                            |
| d2-51 | Voltage deceleration<br>time of V/f<br>separation | 0.0s    | 0.0s to 1000.0s                                                                                                                                                            |
| d2-52 | Frequency RFG time of V/f separation              | 0       | 0: 0<br>1: Preset RFG time                                                                                                                                                 |
| d2-53 | Stop mode selection of V/f separation             | 0       | 0: Frequency and voltage declined to 0 separately 1: Frequency declined after voltage declined to 0 2: Coast to stop (newly added)                                         |

#### 8.5 Parameters Related to SVC Curve

When F0-01 (Motor control mode) = 0 (SVC), SVC-related parameters need to be set. The following table shows the related parameters. F2-02 to F2-03 set the control parameters, and F2-04 to F2-12 adjust the effective speed loop parameters according to the actual operating conditions.

| Parameter        | Parameter Name                        | Default | Value Range       |
|------------------|---------------------------------------|---------|-------------------|
| F2-02<br>(d3-02) | SVC speed loop Kp                     | 5.0     | 0.0 to 6000.0     |
| F2-03<br>(d3-03) | Speed loop Ti in SVC mode             | 0.127s  | 0.000s to 20.000s |
| F2-04<br>(d3-06) | Zero speed<br>switchover<br>frequency | 1.0%    | 0 to d3.09        |
| F2-05<br>(d3-07) | Zero speed Kp correction factor       | 100.0%  | 0.0% to 1000.0%   |
| F2-06<br>(d3-08) | Zero speed Ti<br>correction factor    | 100.0%  | 0.0% to 1000.0%   |
| F2-07<br>(d3-09) | Low speed<br>switchover<br>frequency  | 10.0%   | 0.0% to d312      |
| F2-08<br>(d3-10) | Low speed Kp correction factor        | 100.0%  | 0.0% to 1000.0%   |
| F2-09<br>(d3-11) | Low speed Ti correction factor        | 100.0%  | 0.0% to 1000.0%   |
| F2-10<br>(d3-12) | High speed<br>switchover<br>frequency | 100.0%  | d3-09 to 400.0%   |
| F2-11<br>(d3-13) | High speed Kp correction factor       | 100.0%  | 0.0% to 1000.0%   |
| F2-12<br>(d3-14) | High speed Ti<br>correction factor    | 100.0%  | 0.0% to 1000.0%   |

### 8.6 Motor Phase Sequence Switchover

Unlike the speed reverse function, the direction of the speed is not changed when the motor phase sequence is switched, but the actual running direction of the motor changes to the reverse direction.

| Parameter        | Parameter Name                    | Default | Value Range                                                            |
|------------------|-----------------------------------|---------|------------------------------------------------------------------------|
| F2-14<br>(d0-14) | Motor running direction selection | 0       | 0: Run in the default<br>direction<br>1: Running direction<br>reversed |

## 8.7 Acceleration/Deceleration time

| Item             | Parameter Name                                | Default | Value Range                                                                       |
|------------------|-----------------------------------------------|---------|-----------------------------------------------------------------------------------|
| F0-45<br>(b7-00) | Ramp acceleration/<br>deceleration mode       | 0       | 0: Linear acceleration/deceleration<br>1: S Curve                                 |
| F0-46<br>(b7-01) | Base for ramp acceleration/ deceleration time | 1       | 0: Rated frequency<br>1: Maximum frequency<br>2: 100 Hz<br>3: Frequency reference |
| F0-48<br>(b7-04) | Ramp 1 acceleration time                      | 20.0s   | 0.0s to 6500.0s                                                                   |
| F0-49<br>(b7-05) | Ramp 1<br>deceleration time                   | 20.0s   | 0.0s to 6500.0s                                                                   |
| F0-50<br>(b7-06) | Ramp 1 acceleration start arc                 | 0.00s   | 0.00s to 650.00s                                                                  |
| F0-51<br>(b7-07) | Ramp 1 acceleration end arc                   | 0.00s   | 0.00s to 650.00s                                                                  |
| F0-52<br>(b7-08) | Ramp 1<br>deceleration start<br>arc           | 0.00s   | 0.00s to 650.00s                                                                  |
| F0-53<br>(b7-09) | Ramp 1 deceleration end arc                   | 0.00s   | 0.00s to 650.00s                                                                  |

## 8.8 Frequency Limits

| Parameter        | Parameter Name                                      | Default    | Value Range                                                                                                                                                  |
|------------------|-----------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F2-22<br>(d1-03) | Digital setting of positive frequency upper limit 1 | 800.0%     | F2-26 to 800.0%                                                                                                                                              |
| F2-23<br>(d1-04) | Digital setting of reverse frequency upper limit 1  | -800.0%    | -800.00% to F2-27                                                                                                                                            |
| F2-24<br>(d1-05) | Source of forward<br>frequency upper limit<br>2     | 0 [800.0%] | 0: 800% 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector |

| Parameter        | Parameter Name                                     | Default                                                       | Value Range                                                                                                                                                                                                      |
|------------------|----------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F2-25<br>(d1-06) | Source of reverse<br>frequency upper limit<br>2    | 1: [Opposite to<br>the forward<br>frequency<br>upper limit 2} | 0: -800% 1: Opposite to the forward frequency upper limit 2 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector |
| F2-26<br>(d1-07) | Digital setting of forward frequency lower limit 1 | 0.0%                                                          | 0.0% to F2-22                                                                                                                                                                                                    |
| F2-27<br>(d1-08) | Digital setting of reverse frequency lower limit 1 | 0.0%                                                          | F2-23 to 0.0%                                                                                                                                                                                                    |
| F2-30<br>(d1-09) | Digital setting of torque upper limit 1            | 150.0%                                                        | 0.0%–800.0%                                                                                                                                                                                                      |
| F2-31<br>(d1-10) | Digital setting of torque lower limit 1            | -150.0%                                                       | -800.0%-0.0%                                                                                                                                                                                                     |
| F2-32<br>(d1-11) | Source of torque<br>upper limit 2                  | 0                                                             | 0: 800% 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector                                                     |
| F2-33<br>(d1-12) | Source of torque<br>lower limit 2                  | 1                                                             | 0: -800% 1: Opposite to the source of torque upper limit 2 2: Al1 3: Al2 5: HDI pulse reference (active only for MD630S) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication reference Others: F connector  |

#### 8.9 Common Protection Parameter

| Parameter        | Parameter Name                                | Default | Value Range                                                                                                                             |
|------------------|-----------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| F2-36<br>(d0-41) | Overexcitation gain (V/f)                     | 90%     | 0%–200%                                                                                                                                 |
| F2-37<br>(d2-26) | Overcurrent suppression                       | 1       | 0: Disable<br>1: Enable                                                                                                                 |
| F2-38<br>(d2-27) | Overcurrent suppression threshold             | 200%    | 80% to 300%                                                                                                                             |
| F2-39<br>(d1-54) | Overvoltage suppression                       | 0x0001  | bit 0: V/f overvoltage<br>suppression<br>0: Disable<br>1: Enable<br>bit 1: vector overvoltage<br>suppression<br>0: Disable<br>1: Enable |
| F2-40<br>(d1-55) | Overvoltage suppression action voltage        | 770.0V  | 600.0 V to A3-57                                                                                                                        |
| F2-43<br>(d1-63) | Undervoltage action selection                 | 0       | 0: No action.<br>1: Undervoltage suppression<br>2: Decelerate to stop                                                                   |
| F2-44<br>(d1-64) | Undervoltage<br>suppression action<br>voltage | 430.0V  | A3-55 to 500.0 V                                                                                                                        |

### 8.10 Startup Parameters

| Parameter        | Parameter Name                   | Default | Value Range                                                                                                                          |
|------------------|----------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|
| F2-15<br>(d0-02) | Start mode                       | 0       | 0: Direct start<br>1: Flying start                                                                                                   |
| F2-16<br>(d0-03) | Flying start mode                | 4       | 0: From frequency at stop<br>1: From the mains frequency<br>2: From the maximum frequency<br>4: Magnetic field oriented flying start |
| d0-23            | Startup frequency                | 0.00 Hz | 0.00 Hz to 10.00 Hz                                                                                                                  |
| d0-24            | (Startup frequency holding time) | 0.0s    | 0.0s to 1000.0s                                                                                                                      |
| d0-25            | DC braking time at startup       | 0.0s    | 0.0s to 100.0s                                                                                                                       |
| d0-26            | DC braking current at startup    | 50%     | 0%–800%                                                                                                                              |

## 8.11 Stop Mode

| Item  | Parameter Name                            | Default | Value Range                                                                         |
|-------|-------------------------------------------|---------|-------------------------------------------------------------------------------------|
| d0-04 | OFF1 stop mode                            | 0       | 0: Decelerate to<br>stop<br>1: Coast to stop<br>2: Stop at<br>maximum<br>capability |
| d0-05 | OFF2 (coast to stop) stop mode            | 0       | 0: Coast to stop                                                                    |
| d0-06 | OFF3 (quick stop) stop<br>mode            | 0       | 0: Quick stop<br>1: Stop at<br>maximum<br>capability                                |
| d0-27 | Starting frequency for DC braking at stop | 0.0 Hz  | 0.0 Hz to 600.0 Hz                                                                  |
| d0-28 | DC braking waiting time for stop          | 0.0s    | 0.0s to 100.0s                                                                      |
| d0-29 | DC braking time at stop                   | 0.0s    | 0.0s to 100.0s                                                                      |
| d0-30 | DC braking current at stop                | 50%     | 0%-800%                                                                             |

# 8.12 Carrier Frequency Parameters

| Parameter        | Parameter Name             | Default | Value Range         |
|------------------|----------------------------|---------|---------------------|
| F2-48<br>(A5-06) | Overmodulation coefficient | 103.0%  | 0.0%–110.0%         |
| F2-50<br>(A5-01) | Set carrier frequency      | 4.0 kHz | 0.8 kHz to 20.0 kHz |

## 8.13 I/O Parameters

| Item             | Parameter Name                                     | Default | Value Range                                                                                                                                                                                                                                                                                         |
|------------------|----------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F4-00<br>(b9-00) | Start/stop module A/<br>B selection by<br>terminal | 0       | 0: Module A<br>1: Module B<br>Others: B connector                                                                                                                                                                                                                                                   |
| F4-01<br>(b9-01) | Mode of terminal<br>start/stop module A            | 3       | 0: Disable 1: IN1 start 2: IN1 start, IN2 direction 3: IN1 start in forward direction, IN2 start in reverse direction 4: IN1P (rising edge) start, IN2 stop 5: IN1P (rising edge) start, IN2 stop, IN3 direction 6: IN1P(rising edge) start, IN2P(rising edge) start in reverse direction, IN3 stop |
| F4-02<br>(b9-09) | Mode of terminal<br>start/stop module B            | 3       | 0: Disable 1: IN1 start 2: IN1 start, IN2 direction 3: IN1 start in forward direction, IN2 start in reverse direction 4: IN1P (rising edge) start, IN2 stop 5: IN1P (rising edge) start, IN2 stop, IN3 direction 6: IN1P(rising edge) start, IN2P(rising edge) start in reverse direction, IN3 stop |
| F4-03<br>(E0-00) | DI1 function selection                             | 1       | /                                                                                                                                                                                                                                                                                                   |
| F4-04<br>(E0-01) | DI2 function selection                             | 4       |                                                                                                                                                                                                                                                                                                     |
| F4-05<br>(E0-02) | DI3 function selection (for MD630S)                | 9       |                                                                                                                                                                                                                                                                                                     |
| F4-06<br>(E0-03) | DI4 function selection (for MD630S)                | 12      |                                                                                                                                                                                                                                                                                                     |
| F4-07<br>(E0-04) | DI5 function selection (for MD630S)                | 13      |                                                                                                                                                                                                                                                                                                     |
| F4-08<br>(E0-05) | DI6 function selection (for MD630S)                | 0       |                                                                                                                                                                                                                                                                                                     |
| F4-09<br>(E0-06) | DI7 function selection<br>(for MD630S)             | 0       |                                                                                                                                                                                                                                                                                                     |

| Item             | Parameter Name                                                       | Default | Value Range       |
|------------------|----------------------------------------------------------------------|---------|-------------------|
| F4-14<br>(E1-00) | RO output function selection                                         | 2       | /                 |
| F4-15<br>(E1-04) | DO output function selection                                         | 0       |                   |
| F4-16<br>(E1-08) | FMR (HDO) function selection                                         | 0       |                   |
| F4-21<br>(E2-10) | AI2 filter time                                                      | 0.10s   | 0.00s to 10.00s   |
| F4-22<br>(E2-19) | AI2 fitter time                                                      | 0.10s   | 0.00s to 10.00s   |
| F4-27<br>(E2-38) | Al curve                                                             | 0x0021  | 0x0001 to 0x0055  |
| F4-28<br>(E2-40) | Minimum input of Al curve 1                                          | 0.00V   | -10.00 V to F4-30 |
| F4-29<br>(E2-41) | Percentage<br>corresponding to<br>minimum input of Al<br>curve 1     | 0.0%    | -800.0% to 800.0% |
| F4-30<br>(E2-42) | Maximum input of Al curve 1                                          | 10.00V  | F4-28 to 10.00 V  |
| F4-31<br>(E2-43) | Percentage<br>corresponding to the<br>maximum input of Al<br>curve 1 | 100.0%  | -800.0% to 800.0% |
| F4-32<br>(E2-44) | Minimum input of Al curve 2                                          | 0.00V   | -10.00 V to F4-34 |
| F4-33<br>(E2-45) | Percentage<br>corresponding to<br>minimum input of Al<br>curve 2     | 0.0%    | -800.0% to 800.0% |
| F4-34<br>(E2-46) | Maximum input of Al curve 2                                          | 10.00V  | F4-32 to 10.00 V  |
| F4-35<br>(E2-47) | Percentage<br>corresponding to the<br>maximum input of Al<br>curve 2 | 100.0%  | -800.0% to 800.0% |
| F4-36<br>(E2-48) | Minimum input of Al curve 3                                          | 0.00V   | -10.00 V to F4-38 |
| F4-37<br>(E2-49) | Percentage<br>corresponding to<br>minimum input of AI<br>curve 3     | 0.0%    | -800.0% to 800.0% |
| F4-38<br>(E2-50) | Maximum input of Al curve 3                                          | 10.00V  | F4-36 to 10.00 V  |

| Item             | Parameter Name                                                              | Default | Value Range       |
|------------------|-----------------------------------------------------------------------------|---------|-------------------|
| F4-39<br>(E2-51) | Percentage<br>corresponding to the<br>maximum input of Al<br>curve 3        | 100.0%  | -800.0% to 800.0% |
| F4-40<br>(E2-52) | Minimum input of Al curve 4                                                 | 0.00V   | -10.00 V to F4-42 |
| F4-41<br>(E2-53) | Percentage<br>corresponding to<br>minimum input of Al<br>curve 4            | 0.0%    | -800.0% to 800.0% |
| F4-42<br>(E2-54) | Inflection point 1 input of AI curve 4                                      | 3.00V   | F4-40 to F4-44    |
| F4-43<br>(E2-55) | Percentage corresponding to inflection point 1 input of Al curve 4          | 30.0%   | -800.0% to 800.0% |
| F4-44<br>(E2-56) | Inflection point 2 input of AI curve 4                                      | 6.00V   | F4-42 to F4-46    |
| F4-45<br>(E2-57) | Percentage<br>corresponding to<br>inflection point 2<br>input of AI curve 4 | 60.0%   | -800.0% to 800.0% |
| F4-46<br>(E2-58) | Maximum input of Al curve 4                                                 | 10.00V  | F4-44 to 10.00 V  |
| F4-47<br>(E2-59) | Percentage<br>corresponding to the<br>maximum input of Al<br>curve 4        | 100.0%  | -800.0% to 800.0% |
| F4-48<br>(E2-60) | Minimum input of Al curve 5                                                 | -10.00V | -10.00 V to F4-50 |
| F4-49<br>(E2-61) | Percentage<br>corresponding to<br>minimum input of Al<br>curve 5            | -100.0% | -800.0% to 800.0% |
| F4-50<br>(E2-62) | Inflection point 1 input of AI curve 5                                      | -3.00V  | F4-48 to F4-52    |
| F4-51<br>(E2-63) | Percentage corresponding to inflection point 1 input of Al curve 5          | -30.0%  | -800.0% to 800.0% |
| F4-52<br>(E2-64) | Inflection point 2 input of AI curve 5                                      | 3.00V   | F4-50 to F4-54    |
| F4-53<br>(E2-65) | Percentage<br>corresponding to<br>inflection point 2<br>input of Al curve 5 | 30.0%   | -800.0% to 800.0% |

| Item             | Parameter Name                                                            | Default               | Value Range                                                                                                                                                                                    |
|------------------|---------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F4-54<br>(E2-66) | Maximum input of Al curve 5                                               | 10.00V                | F4-52 to 10.00 V                                                                                                                                                                               |
| F4-55<br>(E2-67) | Percentage<br>corresponding to the<br>maximum input of Al<br>curve 5      | 100.0%                | -800.0% to 800.0%                                                                                                                                                                              |
| F4-59<br>(E3-00) | AO output function selection                                              | 0                     | /                                                                                                                                                                                              |
| F4-60<br>(E3-05) | Minimum input of AO curve                                                 | 0.0%                  | -800.00% to F4-62                                                                                                                                                                              |
| F4-61<br>(E3-06) | Percentage<br>corresponding to<br>minimum input of AO<br>curve            | 0.00V                 | 0.00 V to 10.00 V                                                                                                                                                                              |
| F4-62<br>(E3-07) | Maximum input of AO curve                                                 | 100.0%                | F4-60 to 800.0%                                                                                                                                                                                |
| F4-63<br>(E3-08) | Percentage<br>corresponding to the<br>maximum input of AO<br>curve        | 10.00V                | 0.00 V to 10.00 V                                                                                                                                                                              |
| F4-68<br>(E4-00) | HDI terminal type selection                                               | 1: Used as DI         | 0: Used as HDI<br>1: Used as DI                                                                                                                                                                |
| F4-69<br>(E4-01) | HDI input                                                                 | 0 [Disable]           | 0: Disabled<br>1: Enabled<br>Other: B connector                                                                                                                                                |
| F4-70<br>(E4-07) | HDI curve setting                                                         | 0: Two-point<br>curve | Ones position: Selects the HDI curve. 0: Two-point curve 1: Four-point curve Tens position: Reserved Hundreds position: Reserved Thousands position: Reserved Ten thousands position: Reserved |
| F4-71<br>(E4-08) | Minimum input of two-point HDI curve                                      | 0.00 kHz              | 0.00 to F4-73                                                                                                                                                                                  |
| F4-72<br>(E4-09) | Percentage<br>corresponding to<br>minimum input of<br>two-point HDI curve | 0.0%                  | -800.0% to 800.0%                                                                                                                                                                              |
| F4-73<br>(E4-10) | Maximum input of two-point HDI curve                                      | 20.00 kHz             | F4-71 to 20.00 kHz                                                                                                                                                                             |
| F4-74<br>(E4-11) | Percentage<br>corresponding to<br>maximum input of<br>two-point HDI curve | 100.0%                | -800.0% to 800.0%                                                                                                                                                                              |

| Item             | Parameter Name                                                                           | Default                       | Value Range                                          |
|------------------|------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|
| F4-75<br>(E4-12) | Minimum input of four-point HDI curve                                                    | 0.00 kHz                      | 0.00 to F4-77                                        |
| F4-76<br>(E4-13) | Percentage<br>corresponding to<br>minimum input of<br>four-point HDI curve               | -100.0%                       | -800.0% to 800.0%                                    |
| F4-77<br>(E4-14) | Inflection 1 input of HDI four-point curve                                               | 5.00 kHz                      | F4-75 to F4-79                                       |
| F4-78<br>(E4-15) | Percentage<br>corresponding to<br>inflection point 1<br>input of four-point<br>HDI curve | -30.0%                        | -800.0% to 800.0%                                    |
| F4-79<br>(E4-16) | Inflection 2 input of HDI four-point curve                                               | 10.00 kHz                     | F4-77 to F4-81                                       |
| F4-80<br>(E4-17) | Percentage<br>corresponding to<br>inflection point 2<br>input of four-point<br>HDI curve | 30.0%                         | -800.0% to 800.0%                                    |
| F4-81<br>(E4-18) | Maximum input of four-point HDI curve                                                    | 20.00 kHz                     | F4-79 to 20.00                                       |
| F4-82<br>(E4-19) | Percentage<br>corresponding to<br>maximum input of<br>four-point HDI curve               | 100.0%                        | -800.0% to 800.0%                                    |
| F4-83<br>(E4-32) | HDI filter time                                                                          | 0.10s                         | 0.00s to 10.00s                                      |
| F4-88<br>(E5-00) | FM multi-functional terminal output selection                                            | 0 [HDO pulse<br>output (FMP)] | 0: HDO pulse output (FMP)<br>1: Digital output (FMR) |
| F4-89<br>(E5-01) | HDO output function selection                                                            | 0: Running frequency          | /                                                    |
| F4-90<br>(E5-03) | Minimum input of HDO curve                                                               | 0.0                           | -100.0% to F4-92                                     |
| F4-91<br>(E5-04) | Percentage<br>corresponding to<br>minimum input of<br>HDO curve                          | 0.00                          | 0.00% to 100.00%                                     |
| F4-92<br>(E5-05) | Maximum input of HDO curve                                                               | 100.0                         | F4-90 to 100.0%                                      |

| Item             | Parameter Name                                                      | Default   | Value Range            |
|------------------|---------------------------------------------------------------------|-----------|------------------------|
| F4-93<br>(E5-06) | Percentage<br>corresponding to the<br>maximum input of<br>HDO curve | 100.00    | 0.00% to 100.00%       |
| F4-97<br>(E5-15) | Maximum frequency of HDO output                                     | 50.00 kHz | 0.01 kHz to 100.00 kHz |

### **8.14 Communication Parameters**

The following table shows the common communication parameters of MD630S.

Table 8–1 Common communication parameters of MD630S

| Item             | Parameter Name                                                     | Default | Value Range                                                                                                                                          |
|------------------|--------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fd-00<br>(n1-02) | Commissioning address (for commissioning software/operating panel) | 1       | 1 to 127                                                                                                                                             |
| Fd-04<br>(n2-20) | Modbus<br>communication<br>enable                                  | 0       | 0: Not supported by the current device<br>1: Enabled                                                                                                 |
| Fd-05<br>(n2-00) | Modbus baud rate                                                   | 5       | 0: 300 bps<br>1: 600 bps<br>2: 1200bps<br>3: 2400 bps<br>4: 4800 bps<br>5: 9600 bps<br>6: 19200 bps<br>7: 38400 bps<br>8: 57600 bps<br>9: 115200 bps |
| Fd-06<br>(n2-01) | Modbus data format                                                 | 0       | 0: 8-N-2 (No check)<br>1: 8-E-1 (Even parity check)<br>2: 8-O-1 (Odd parity check)<br>3: No check (8-N-1)                                            |
| Fd-07<br>(n2-02) | Modbus local address                                               | 1       | 1 to 247                                                                                                                                             |
| Fd-08<br>(n2-03) | Modbus response delay                                              | 2 ms    | 0 ms to 20 ms                                                                                                                                        |
| Fd-09<br>(n2-04) | Modbus<br>communication<br>timeout time                            | 0.0s    | 0.0s to 6000.0s                                                                                                                                      |

| Item             | Parameter Name                              | Default | Value Range                                                                                       |
|------------------|---------------------------------------------|---------|---------------------------------------------------------------------------------------------------|
| Fd-13<br>(n3-00) | CAN communication enable                    | 0       | 0: Not supported by the current device<br>1: Enabled                                              |
| Fd-14<br>(n3-01) | CAN communication protocol selection        | 2       | 1: CANopen<br>2: CANlink                                                                          |
| Fd-15<br>(n3-02) | CANopen baud rate                           | 5       | 0: 20 kbps<br>1: 50 kbps<br>2: 100kbps<br>3: 125 kbps<br>4: 250 kbps<br>5: 500 kbps<br>6: 1 Mbps  |
| Fd-16<br>(n3-03) | CANopen station number                      | 1       | 1 to 127                                                                                          |
| Fd-20<br>(n3-06) | CANlink baud rate                           | 5       | 0: 20 kbps<br>1: 50 kbps<br>2: 100 kbps<br>3: 125 kbps<br>4: 250 kbps<br>5: 500 kbps<br>6: 1 Mbps |
| Fd-21<br>(n3-07) | CANlink station number                      | 1       | 1 to 63                                                                                           |
| Fd-32<br>(n3-14) | CAN communication disconnection coefficient | 3       | 1 to 15                                                                                           |

The following table shows the common communication parameters of MD630N.

Table 8–2 Common communication parameters of MD630N

| Item             | Parameter Name                                                     | Default | Value Range                                  |
|------------------|--------------------------------------------------------------------|---------|----------------------------------------------|
| Fd-00<br>(n1-02) | Commissioning address (for commissioning software/operating panel) | 1       | 1 to 127                                     |
| Fd-01<br>(n0-10) | Communication type                                                 | 1       | 1: EtherCAT<br>2: EtherNet/IP<br>3: PROFINET |
| Fd-39<br>(n4-16) | EtherCAT station name                                              | 0       | 0 to 65535                                   |
| Fd-40<br>(n4-17) | EtherCAT station alias                                             | 0       | 0 to 65535                                   |
| Fd-41<br>(n4-18) | EtherCAT station alias backup                                      | 0       | 0 to 65535                                   |

| Item             | Parameter Name                                                  | Default | Value Range             |
|------------------|-----------------------------------------------------------------|---------|-------------------------|
| Fd-47<br>(n0-60) | MAC1 (EtherNet/IP, PROFINET)                                    | 0x0070  | 0x0000 to 0xFFFF        |
| Fd-48<br>(n0-61) | MAC2 (EtherNet/IP, PROFINET)                                    | 0x00CA  | 0x0000 to 0xFFFF        |
| Fd-49<br>(n0-62) | MAC3 (EtherNet/IP, PROFINET)                                    | 0x004D  | 0x0000 to 0xFFFF        |
| Fd-50<br>(n0-63) | MAC4 (EtherNet/IP, PROFINET)                                    | 0x00AA  | 0x0000 to 0xFFFF        |
| Fd-51<br>(n0-64) | MAC5 (EtherNet/IP, PROFINET)                                    | 0x00AA  | 0x0000 to 0xFFFF        |
| Fd-52<br>(n0-65) | MAC6 (EtherNet/IP, PROFINET)                                    | 0x00AA  | 0x0000 to 0xFFFF        |
| Fd-58<br>(n5-00) | EtherNet/IP-DHCP                                                | 0       | 0: Disable<br>1: Enable |
| Fd-59<br>(n5-01) | Most significant byte of EtherNet/IP-IP address                 | 0       | 0 to 255                |
| Fd-60<br>(n5-02) | Second most<br>significant byte of<br>EtherNet/IP-IP<br>address | 0       | 0 to 255                |
| Fd-61<br>(n5-03) | Third byte of<br>EtherNet/IP-IP<br>address                      | 0       | 0 to 255                |
| Fd-62<br>(n5-04) | Least significant byte of EtherNet/IP-IP address                | 0       | 0 to 255                |
| Fd-63<br>(n5-05) | EtherNet/IP-Most<br>significant byte of<br>subnet mask          | 0       | 0 to 255                |
| Fd-64<br>(n5-06) | EtherNet/IP-Second<br>most significant byte<br>of subnet mask   | 0       | 0 to 255                |
| Fd-65<br>(n5-07) | EtherNet/IP-Third<br>byte of subnet mask                        | 0       | 0 to 255                |
| Fd-66<br>(n5-08) | EtherNet/IP-Least<br>significant byte of<br>subnet mask         | 0       | 0 to 255                |
| Fd-67<br>(n5-09) | EtherNet/IP-Most significant byte of gateway                    | 0       | 0 to 255                |
| Fd-68<br>(n5-10) | EtherNet/IP-Second<br>most significant byte<br>of gateway       | 0       | 0 to 255                |

| Item             | Parameter Name                                           | Default | Value Range |
|------------------|----------------------------------------------------------|---------|-------------|
| Fd-69<br>(n5-11) | EtherNet/IP-Third byte of gateway                        | 0       | 0 to 255    |
| Fd-70<br>(n5-12) | EtherNet/IP-Least significant byte of gateway            | 0       | 0 to 255    |
| Fd-76<br>(n6-01) | PROFINET-Most significant byte of the IP address         | 0       | 0 to 255    |
| Fd-77<br>(n6-02) | PROFINET-Least significant byte of the IP address        | 0       | 0 to 255    |
| Fd-78<br>(n6-03) | PROFINET-Third byte of the IP address                    | 0       | 0 to 255    |
| Fd-79<br>(n6-04) | PROFINET-Least significant byte of the IP address        | 0       | 0 to 255    |
| Fd-80<br>(n6-05) | PROFINET-Most significant byte of the subnet mask        | 0       | 0 to 255    |
| Fd-81<br>(n6-06) | PROFINET-Second most significant byte of the subnet mask | 0       | 0 to 255    |
| Fd-82<br>(n6-07) | PROFINET-Third byte of subnet mask                       | 0       | 0 to 255    |
| Fd-83<br>(n6-08) | PROFINET-Least<br>significant byte of<br>subnet mask     | 0       | 0 to 255    |
| Fd-84<br>(n6-09) | PROFINET-Most significant byte of gateway                | 0       | 0 to 255    |
| Fd-85<br>(n6-10) | PROFINET-Second<br>most significant byte<br>of gateway   | 0       | 0 to 255    |
| Fd-86<br>(n6-11) | PROFINET-Third byte of gateway                           | 0       | 0 to 255    |
| Fd-87<br>(n6-12) | PROFINET-Least significant byte of gateway               | 0       | 0 to 255    |





Shenzhen Inovance Technology Co., Ltd.

www.inovance.com

Add.: Inovance Headquarters Tower, High-tech Industrial Park, Guanlan Street, Longhua New District, Shenzhen 518000, P.R. China

Tel: (0755) 2979 9595 Fax: (0755) 2961 9897

Suzhou Inovance Technology Co., Ltd.

www.inovance.com

Add.: No.52, Tian E Dang Road, Wuzhong District, 215104, Suzhou City, Jiangsu Province, P.R. China

Tel: (0512) 6637 6666 Fax: (0512) 6285 6720