


‑1‑

Preface

Preface

Introduction
The SV680‑INT series servo drive is a high‑end servo drive designed based on global‑
leading standards and high‑end application needs. It is featured with high speed, high
precision, high performance, and tuning‑free function. Compliant with CE, UL, KC,
EAC, UKCA and TUV certification requirements and top international quality
standards, it is specially suitable for high‑end applications.

Its power ranges from 0.05 kW to 7.5 kW. It supports Modbus, CANopen and EtherCAT
communication protocols and carries necessary communication interfaces to work
with the host controller for implementing a networked operation of multiple servo
drives. The servo drive supports adaptive stiffness level setting, inertia auto‑tuning,
and vibration suppression for easy use. The drive, together with an MS1 series high‑
response servo motor (with ultra‑low, low or medium inertia) equipped with a 23‑ or
26‑bit single‑turn/multi‑turn absolute encoder, any third party servo motor, linear
motor or DDR motor, serves to deliver a quiet and stable operation and accurate
process control through features like fully closed‑loop, internal process segment and
gantry synchronization.

The drive also comes with features like safe torque off, dynamic braking, and brake
output (external relay not needed) as standard and supports extension of seven kinds
of functional safety and bus functional safety FSoE (the PINT version further offers
24V backup power) for continuous safe production. The drive aims to achieve quick
and accurate position control, speed control, and torque control through high‑
performance solutions for automation equipment in such industries as electronic
manufacturing, lithium batteries, manipulators, packaging, and machine tools.

This manual introduces the communication of the drive, including configuration of
Modbus, CANopen, and EtherCAT communication and application cases.

Note
The speed of a servo motor and DDR motor is in RPM and DDL motor is in mm/s. RPM is
used throughout the manual. Unless otherwise specified, an RPM value is equivalent to the
mm/s one.

Abbreviation
The following abbreviations will be used herein to refer to the corresponding servo
drives.

Abbreviation Servo drive
[P] SV680P*****‑****
[N] SV680N*****‑****



‑2‑

Preface

More documents
The documents related to the drive are shown in the following figure and table.

No. Name Data Code Description

① SV680‑INT series flagship servo drive 19120347

Provides instructions on product selection,
including the list of supporting components,
technical data on the drive, and the selection guide
of cables.

②
SV680‑INT Series Servo Drive
Installation and Commissioning Quick
Guide

PS00015536
Describes the model number, installation, terminals
and quick commissioning and operation of the
drive.

③
SV680‑INT Series Servo Drive Hardware
Guide

PS00015494
Describes technical data, installation, terminals,
required certificates and standards and solutions to
common EMC problems of the drive.

④
SV680‑INT Series Servo Drive Function
Guide

PS00015554
Introduces the functions and faults of the drive,
including function overview, adjustment, basic
servo functions and fault handling.

⑤
SV680‑INT Series Servo Drive
Communication Guide

PS00015535
Introduces the communication of the drive,
including configuration of Modbus, CANopen, and
EtherCAT communication.

⑥

SV680P‑INT Series Servo Drive Safety
Guide

PS00009740
Describes the safety function and related
certifications and standards, wiring, commissioning
process, troubleshooting and parameters of the
drive.

SV680N‑INT Series Servo Drive Safety
Guide

PS00009768

⑦
SV680‑INT Series Servo Drive Parameter
Guide

PS00015555
Introduces the parameters of the drive, including a
parameter list and description of parameters.



‑3‑

Preface

No. Name Data Code Description

⑧

MS1‑R Series Servo Motor Selection
Guide

PS00004605

Introduces the product information, general
specifications, motor selection, cable selection, and
required certificates and standards of the servo
motor.

MS1‑R Series Servo Motor Installation
Guide

PS00005407

Describes installation of the motor, including an
installation flowchart, unpacking and
transportation, mechanical installation, and
electrical installation.

Direct drive motor module platform and
drive

19120011
Introduces the product information, general
specifications, motor selection, cable selection, and
required standards of the motor.

Revision History

Date Version Description

2024‑03 A01 Made minor corrections.
2024‑02 A00 First release

Access to the Guide
This guide is not delivered with the product. You can obtain the PDF version in the
following way:

● Visit http://www.inovance.com, go to Support > Download, search by keyword,
and then download the PDF file.

● Scan the QR code on the product with your mobile phone.
● Scan the QR code below to install the app, where you can search for and

download manuals.

Warranty
Inovance provides warranty service within the warranty period (as specified in your
order) for any fault or damage that is not caused by improper operation of the user.
You will be charged for any repair work after the warranty period expires.

Within the warranty period,maintenance fee will be charged for the following
damage:

● Damage caused by operations not following the instructions in the user guide
● Damage caused by fire, flood, or abnormal voltage
● Damage caused by unintended use of the product

www.inovance.com


‑4‑

Preface

● Damage caused by use beyond the specified scope of application of the product
● Damage or secondary damage caused by force majeure (natural disaster,

earthquake, and lightning strike)

The maintenance fee is charged according to the latest Price List of Inovance. If
otherwise agreed upon, the terms and conditions in the agreement shall prevail.

For details, see the Product Warranty Card.



‑5‑

TTaabbllee ooff CCoonntteennttss

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Fundamental Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1 Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Modbus Communication [P] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Communication technical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Terminal Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 RS485 Communication Connection Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Communication Transmission Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Data Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Communication Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 CANopen Communication [P] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Communication Technical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Terminal Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 CAN Communication Connection Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Communication Transmission Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Data Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Network Management System (NMT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Service data object (SDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Process Data Object (PDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.4 Synchronization Object (SYNC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.5 Emergency (EMCY) Object Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.6 SDO Transmission Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.7 SDO transmission framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Communication Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 PN‑to‑CANopen bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 EtherCAT Communication [N] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Communication technical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Communication Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table of Contents



‑6‑

4.2.1 Terminal Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 EtherCAT Communication Connection Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Communication Transmission Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Structure of EtherCAT Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Communication State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Distributed clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.4 Status Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Data Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Process data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Service Data Object (SDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Communication Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5 Communication Configuration Instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Modbus Communication Configuration Case [P] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.1 Communication Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.2 Wiring of Modbus RTU Communication Between SV680P‑INT and Third‑Party PLCs . 75
5.1.3 Servo Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.4 PLC Program Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 CANopen Communication Configuration Case [P] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.1 Connecting SV680P‑INT to Schneider 3S Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Connecting SV680P‑INT to Beckoff CANopen Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3 Connecting SV680P‑INT to Inovance H3U CANopen Master . . . . . . . . . . . . . . . . . . . . . 117
5.2.4 Connecting SV680P‑INT to Inovance EASY CANopen Master. . . . . . . . . . . . . . . . . . . . . 128

5.3 EtherCAT Communication Configuration Case [N]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3.1 SV680N‑INT and AM600 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3.2 SV680N‑INT and Omron Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.3 SV680N‑INT and Beckhoff Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.4 SV680N‑INT and KEYENCE KV7500 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3.4.1 Configuring the Servo Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
5.3.4.2 Configuring KEYENCE KV7500 Software Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
5.3.4.3 Trial Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194

5.3.5 SV680N‑INT and EASY Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Table of Contents



‑7‑

Fundamental Safety Instructions

Fundamental Safety Instructions

Safety Precautions
● This chapter presents essential safety instructions for a proper use of the

equipment. Before operating the equipment, read through the guide and
comprehend all the safety instructions. Failure to comply with the safety
precautions may result in death, serious injury, or equipment damage.

● "CAUTION", "WARNING", and "DANGER" items in the guide only indicate some of
the precautions that need to be followed; they just supplement the safety
precautions.

● Use this equipment according to the designated environment requirements.
Damage caused by improper use is not covered by warranty.

● Inovance shall take no responsibility for any personal injuries or property damage
caused by improper usage.

Safety Levels and Definitions

Indicates that failure to comply with the notice will result in death
or severe personal injuries.

Indicates that failure to comply with the notice may result in death
or severe personal injuries.

Indicates that failure to comply with the notice may result in minor
or moderate personal injuries or equipment damage.

Fundamental Safety Instructions
● Drawings in the guide are sometimes shown without covers or protective guards.

Remember to install the covers or protective guards as specified first, and then
perform operations in accordance with the instructions.

● The drawings in the guide are shown for illustration only and may be different
from the product you purchased.

● Users must take mechanical precautions to protect personal safety and wear
protective equipment, such as anti‑smashing shoes, safety clothing, safety glasses,
protective gloves, and protective sleeves.



‑8‑

Fundamental Safety Instructions

Unpacking

● Do not install the equipment if you find damage, rust, or signs of use on the equipment
or accessories upon unpacking.

● Do not install the equipment if you find water seepage or missing or damaged
components upon unpacking.

● Do not install the equipment if you find the packing list does not conform to the
equipment you received.

● Check whether the packing is intact and whether there is damage, water seepage,
dampness, and deformation before unpacking.

● Unpack the package by following the unpacking sequence. Do not strike the package
violently.

● Check whether there is damage, rust, or injuries on the surface of the equipment and
equipment accessories before unpacking.

● Check whether the package contents are consistent with the packing list before
unpacking.

Storage and Transportation

● Large‑scale or heavy equipment must be transported by qualified professionals using
specialized hoisting equipment. Failure to comply may result in personal injuries or
equipment damage.

● Before hoisting the equipment, ensure the equipment components such as the front
cover and terminal blocks are secured firmly with screws. Loosely‑connected
components may fall off and result in personal injuries or equipment damage.

● Never stand or stay below the equipment when the equipment is being hoisted by the
hoisting equipment.

● When hoisting the equipment with a steel rope, ensure the equipment is hoisted at a
constant speed without suffering from vibration or shock. Do not turn the equipment
over or let the equipment stay hanging in the air. Failure to comply may result in
personal injuries or equipment damage.



‑9‑

Fundamental Safety Instructions

● Handle the equipment with care during transportation and mind your steps to prevent
personal injuries or equipment damage.

● When carrying the equipment with bare hands, hold the equipment casing firmly with
care to prevent parts from falling. Failure to comply may result in personal injuries.

● Store and transport the equipment based on the storage and transportation
requirements. Failure to comply will result in equipment damage.

● Avoid storing or transporting the equipment in environments with water splash, rain,
direct sunlight, strong electric field, strong magnetic field, and strong vibration.

● Avoid storing the equipment for more than three months. Long‑term storage requires
stricter protection and necessary inspections.

● Pack the equipment strictly before transportation. Use a sealed box for long‑distance
transportation.

● Never transport the equipment with other equipment or materials that may harm or
have negative impacts on this equipment.

Installation

● The equipment must be operated only by professionals with electrical knowledge. Non‑
professionals are not allowed.

● Read through the guide and safety instructions before installation.
● Do not install this equipment in places with strong electric or magnetic fields.
● Before installation, check that the mechanical strength of the installation site can bear
the weight of the equipment. Failure to comply will result in mechanical hazards.

● Do not wear loose clothes or accessories during installation. Failure to comply may
result in an electric shock.

● When installing the equipment in a closed environment (such as a cabinet or casing),
use a cooling device (such as a fan or air conditioner) to cool the environment down to
the required temperature. Failure to comply may result in equipment over‑temperature
or a fire.

● Do not retrofit the equipment.
● Do not fiddle with the bolts used to fix equipment components or the bolts marked in
red.

● When the equipment is installed in a cabinet or final assembly, a fireproof enclosure
providing both electrical and mechanical protections must be provided. The IP rating
must meet IEC standards and local laws and regulations.

● Before installing equipments with strong electromagnetic interference, such as a
transformer, install a shielding equipment for the equipment to prevent malfunction.

● Install the equipment onto an incombustible object such as a metal. Keep the
equipment away from combustible objects. Failure to comply will result in a fire.



‑10‑

Fundamental Safety Instructions

● Cover the top of the equipment with a piece of cloth or paper during installation. This is
to prevent unwanted objects such as metal chippings, oil, and water from falling into the
equipment and causing faults. After installation, remove the cloth or paper on the top of
the equipment to prevent over‑temperature caused by poor ventilation due to blocked
ventilation holes.

● Resonance may occur when the equipment operating at a constant speed executes
variable speed operations. In this case, install the vibration‑proof rubber under the
motor frame or use the vibration suppression function to reduce resonance.

Wiring

● Equipment installation, wiring, maintenance, inspection, or parts replacement must be
performed only by professionals.

● Before wiring, cut off all the power supplies of the equipment. and wait for at least the
time designated on the equipment warning label before further operations because
residual voltage still exists after power‑off. After waiting for the designated time,
measure the DC voltage in the main circuit to ensure the DC voltage is within the safe
voltage range. Failure to comply will result in an electric shock.

● Do not perform wiring, remove the equipment cover, or touch the circuit board with
power ON. Failure to comply will result in an electric shock.

● Check that the equipment is grounded properly. Failure to comply can result in electric
shock.

● Do not connect the input power supply to the output end of the equipment. Failure to
comply can result in equipment damage or even a fire.

● When connecting a drive to the motor, check that the phase sequences of the drive and
motor terminals are consistent to prevent reverse motor rotation.

● Cables used for wiring must meet cross sectional area and shielding requirements. The
shield of the cable must be reliably grounded at one end.

● Fix the terminal screws with the tightening torque specified in the user guide. Improper
tightening torque may overheat or damage the connecting part, resulting in a fire.

● After wiring is done, check that all cables are connected properly and no screws,
washers or exposed cables are left inside the equipment. Failure to comply may result in
an electric shock or equipment damage.

● Follow the proper electrostatic discharge (ESD) procedure and wear an anti‑static wrist
strap to perform wiring. Failure to comply may result in damage to the equipment or to
the internal circuit of the product.

● Use shielded twisted pairs for the control circuit. Connect the shield to the grounding
terminal of the equipment for grounding purpose. Failure to comply will result in
equipment malfunction.

Power-on



‑11‑

Fundamental Safety Instructions

● Before power‑on, check that the equipment is installed properly with reliable wiring and
the motor can be restarted.

● Check that the power supply meets equipment requirements before power‑on to
prevent equipment damage or a fire.

● After power‑on, do not open the cabinet door or protective cover of the equipment,
touch any terminal, or disassemble any unit or component of the equipment. Failure to
comply will result in an electric shock.

● Perform a trial run after wiring and parameter setting to ensure the equipment operates
safely. Failure to comply may result in personal injuries or equipment damage.

● Before power‑on, check that the rated voltage of the equipment is consistent with that
of the power supply. Failure to comply may result in a fire.

● Before power‑on, check that no one is near the equipment, motor, or machine. Failure
to comply may result in death or personal injuries.

Operation

● The equipment must be operated only by professionals. Failure to comply will result in
death or personal injuries.

● Do not touch any connecting terminals or disassemble any unit or component of the
equipment during operation. Failure to comply will result in an electric shock.

● Do not touch the equipment casing, fan, or resistor with bare hands to feel the
temperature. Failure to comply may result in personal injuries.

● Prevent metal or other objects from falling into the equipment during operation. Failure
to comply may result in a fire or equipment damage.

Maintenance

● Equipment installation, wiring, maintenance, inspection, or parts replacement must be
performed only by professionals.

● Do not maintain the equipment with power ON. Failure to comply will result in an
electric shock.

● Before maintenance, cut off all the power supplies of the equipment and wait for at least
the time designated on the equipment warning label.

● In case of a permanent magnet motor, do not touch the motor terminals immediately
after power‑off because the motor terminals will generate induced voltage during
rotation even after the equipment power supply is off. Failure to comply will result in an
electric shock.



‑12‑

Fundamental Safety Instructions

● Perform routine and periodic inspection and maintenance on the equipment according
to maintenance requirements and keep a maintenance record.

Repair

● Equipment installation, wiring, maintenance, inspection, or parts replacement must be
performed only by professionals.

● Do not repair the equipment with power ON. Failure to comply will result in an electric
shock.

● Before inspection and repair, cut off all the power supplies of the equipment and wait
for at least the time designated on the equipment warning label.

● Submit the repair request according to the warranty agreement.
● When the fuse is blown or the circuit breaker or earth leakage current breaker (ELCB)
trips, wait for at least the time designated on the equipment warning label before
power‑on or further operations. Failure to comply may result in death, personal injuries
or equipment damage.

● When the equipment is faulty or damaged, the troubleshooting and repair work must be
performed by professionals that follow the repair instructions, with repair records kept
properly.

● Replace quick‑wear parts of the equipment according to the replacement instructions.
● Do not use damaged equipment. Failure to comply may result in death, personal
injuries, or severe equipment damage.

● After the equipment is replaced, check the wiring and set parameters again.
Disposal

● Dispose of retired equipment in accordance with local regulations and standards.
Failure to comply may result in property damage, personal injuries, or even death.

● Recycle retired equipment by observing industry waste disposal standards to avoid
environmental pollution.

Additional Precautions
Precautions for the dynamic brake

● Dynamic braking can only be used for emergency stop in case of failure and
sudden power failure. Do not trigger failure or power failure frequently.

● Ensure that the dynamic braking function has an operation interval of more than 5
minutes at high speed, otherwise the internal dynamic braking circuit may be
damaged.



‑13‑

Fundamental Safety Instructions

● Dynamic braking is commonly used in rotating mechanical structures. For
example, when a motor has stopped running, it keeps rotating due to the inertia of
its load. In this case, this motor is in the regenerative state and short‑circuit
current passes through the dynamic brake. If this situation continues, the drive,
and even the motor, may be burned.

Safety label
For safe equipment operation and maintenance, comply with the safety labels on the
equipment. Do not damage or remove the safety labels. The following table describes
the meaning of the safety labels.

Safety label Description
● Never fail to connect the protective earth (PE) terminal. Read
through the guide and follow the safety instructions before use.

● Do not touch terminals within 15 minutes after disconnecting the
power supply to prevent the risk of electric shock.

● Do not touch the heatsink with power ON to prevent the risk of burn.



Communication Protocols

‑14‑

1 Communication Protocols

Supported Protocol SV680P‑INT SV680N‑INT
Modbus ✓ ×
CANopen ✓ ×
EtherCAT × ✓



Modbus Communication [P]

‑15‑

2 Modbus Communication [P]

2.1 Communication

2.1.1 Communication technical data

Item Specification

Modbus
Basic
perform
ance of
slave

Link layer protocol RS485
Application layer
protocol Modbus‑RTU, GBT 19582.2‑2008, custom command areas

Baud rate 115200bps
Duplex mode Half‑duplex

Data format 8‑N‑1 ((1) 8‑bit data, (2) check, (3) stop bit)

2.1.2 Protocols

The Modbus protocol is a common language applied to electronic controllers.
Through this protocol, the controllers can communicate with each other and other
devices. It has become a general industry standard. Thanks to this communication
protocol, control devices produced by different manufacturers can be connected into
an industrial network for centralized monitoring.

2.2 Hardware Configuration

2.2.1 Terminal Layout

Figure 2‑1 Communication Terminal pin layout of the servo drive



Modbus Communication [P]

‑16‑

Table 2–1 Description of communication terminal pins

Pin No. Description Description
1 and 9 CANH CAN communication port
2 and 10 CANL
3 and 11 CGND CAN communication GND
4 and 12 RS485+ RS485 communication port
5 and 13 RS485‑
6 and 14 ‑ ‑
7 and 15 ‑ ‑
8 and 16 GND Ground
Enclosure PE Shield

2.2.2 RS485 Communication Connection Example

RS485 communication connection with PLC
The following figure shows the cable used for 485 communication between the servo
drive and PLC.

Figure 2‑2 Outline drawing of cable used for CAN communication between the servo drive

and PLC

Use a three‑conductor shielded cable to connect the RS485 bus, with three
conductors connected to 485+, 485‑, and GND (GND represents non‑isolated RS485
circuit) respectively. Connect RS485+ and RS485‑ with two conductors twisted
together and connect the remaining conductor to the RS485 reference ground (GND).
Connect the shield to the device ground (PE). Connect a 120Ω termination resistor on
each end of the bus to prevent RS485 signal reflection.



Modbus Communication [P]

‑17‑

Table 2–2 Pin connection relation of the cable used for CAN communication between the
servo drive and PLC

RJ45 on the Drive (A) PLC Side (B)
Communica
tion Type Pin No. Description

Communica
tion Type Pin No. Description

RS485
4 485+

RS485
4 485+

5 485‑ 5 485‑
8 GND 8 GND

‑ Enclosure
PE (shield

layer) ‑ Enclosure
PE (shield

layer)

RS485 communication connection for multi-drive applications
The following figure shows the cable used for parallel connection of multiple servo
drives during RS485 communication.

Figure 2‑3 Outline drawing of multi‑drive communication cable

Table 2–3 Pin connection relation of the cable used for multi‑drive RS485 communication
(pins in 485 group used only)

RJ45 on the Drive (A) RJ45 on the Drive Side (B)
Communica
tion Type Pin No. Description

Communica
tion Type Pin No. Description

RS485
4 485+

RS485
4 485+

5 485‑ 5 485‑
8 GND 8 GND

‑ Enclosure
PE (shield

layer) ‑ Enclosure
PE (shield

layer)

In case of a large number of nodes, use the daisy chain mode for RS485
communication. Connect the reference grounds of RS485 signals of all the nodes (up
to 128 nodes) together.



Modbus Communication [P]

‑18‑

Figure 2‑4 RS485 bus topology

Do not connect (GND) terminal to the CGND terminal of the drive. Failure to comply
may damage the machine.

Figure 2‑5 Daisy chain mode

The following table lists the maximum number of nodes and transmission distance
supported by the standard RS485 circuit at different transmission rate.

Table 2–4 Transmission distance and number of nodes

No.
Transmission
Rate (kbps)

Transmission
Distance (m)

Number of
Nodes

Cable Size

1 115.2 100 128 AWG26
2 19.2 1000 128 AWG26

2.3 Communication Transmission Mode
In an RS485 communication network, data is transmitted in the asynchronous serial
and half‑duplex transmission mode. Data is sent frame by frame in the message



Modbus Communication [P]

‑19‑

format specified by the Modbus‑RTU protocol. The idle time longer than 3.5‑byte
transmission time marks the start of a new communication frame.

The built‑in communication protocol of the drive is the Modbus‑RTU slave
communication protocol, which allows the drive to respond to the query command
from the master or execute the action according to query command from the master
and respond with communication data.

The master can be a PC, an industrial control device, or a PLC, etc. The master can
separately communicate with a slave or issue broadcast information to all slaves.
When the master sends a query command to a single slave, the slave needs to return
a response frame. For a broadcast message sent by the master, the slaves do not
need to return a response to the master.

2.4 Data Frame Structure
Parameters of the SV680P‑INT servo drive are divided into 16‑bit and 32‑bit
parameters based on the data length. You can read and write parameters through the
Modbus RTU protocol.

The command codes for reading/writing parameters vary with the data length.

Operation Command code
Read 16‑bit/32‑bit parameters 0x03

Write 16‑bit parameters 0x06
Write 32‑bit parameters 0x10

Command code for reading parameter: 0x03
In Modbus RTU protocol, command code 0x03 is used to read both 16‑bit and 32‑bit
parameters.

Request frame format:

Value Description

START Equal to or larger than 3.5‑character idle time, indicating the start of
a frame

ADDR
Servo axis address: 1 to 247
Note: 1 to 247 are decimal values which need to be converted
into hexadecimal equivalents.

CMD Command code: 0x03



Modbus Communication [P]

‑20‑

Value Description

DATA[0]

Register start address (eight high bits): parameter group number of
the start register
Take H06.11 as an example, "06" is the group number, which means
DATA[0] = 0x06.
Note: In this example, "06" is a hexadecimal value that needs
no conversion.

DATA[1]

Register start address (eight low bits): offset within the parameter
group of the start register
Take H06.11 as an example, "11" is the offset within the parameter
group. That is, DATA [1] = 0x0B.
Note: In this example, ''11" is a decimal value that needs to be
converted into the hexadecimal equivalent 0x0B.

DATA[2] Read the eight high bits N (H) of the number of parameters
(hexadecimal)

DATA[3] Read the eight low bits N (L) of the number of parameters
(hexadecimal)

CRCL CRC valid byte (low 8 bits).

CRCH CRC valid byte (high 8 bits).

END Equal to or larger than 3.5‑character idle time, indicating the end of
a frame

Response frame format:

Value Description

START Equal to or larger than 3.5‑character idle time, indicating the start of
a frame

ADDR Servo axis address, hexadecimal
CMD Command code: 0x03

DATALENGTH
Number of parameter bytes, equal to reading the number of
parameters N x 2

DATA[0] Parameter data in the first register (eight high bits)

DATA[1] Parameter data in the first register (eight low bits)
DATA[…] …

DATA[N*2‑2] Parameter data in the Nth register (eight high bits)

DATA[N*2‑1] Parameter data in the Nth register (eight low bits)

CRCL CRC valid byte (low 8 bits).

CRCH CRC valid byte (high 8 bits).

END Equal to or larger than 3.5‑character idle time, indicating the end of
a frame

In Modbus RTU protocol, command code 0x06 is used to write 16‑bit parameters.
Command code for writing 32‑bit parameters: 0x10

Communication example



Modbus Communication [P]

‑21‑

● To read data with a length of two words by taking H02.02 as the start register in
the drive whose servo axis address is 01:
Master request frame

01 03 02 02 00 02 CRCL CRCH

Slave response frame:

01 03 04 00 01 00 00 CRCL CRCH

The response frame indicates the slave returns data with a length of two words
(four bytes), the content of which is 0x0001 and 0x0000.

If the slave response frame is as follows:

01 83 02 CRCL CRCH

This response frame indicates a communication error occurs and the error code is
0x02. (0x83 indicates an error.)

● To read H05.07 (32‑bit) in the drive whose servo axis address is 01:
Master request frame

01 03 05 07 00 02 CRCL CRCH

Slave response frame:

01 03 04 00 01 00 00 CRCL CRCH

The preceding response frame indicates the value of H05.07 is 0x00000001.

Command code for writing 16-bit parameters: 0x06

Do not write 32‑bit parameters with the command code 0x06. Failure to comply can result
in unexpected error.

Request frame format:

Value Description

START Equal to or larger than 3.5‑character idle time, indicating the start of
a frame

ADDR
Servo axis address 1 to 247
Note: 1 to 247 are decimal values which need to be converted
into hexadecimal equivalents.

CMD Command code: 0x06



Modbus Communication [P]

‑22‑

Value Description

DATA[0]

Register start address (eight high bits): parameter group number of
the start register
Take H06.11 as an example, "06" is the group number, which means
DATA[0] = 0x06.
Note: In this example, "06" is a hexadecimal value that needs
no conversion.

DATA[1]

Register start address (eight low bits): offset within the parameter
group of the start register
Take H06.11 as an example, "11" is the offset within the parameter
group, which means DATA[1] = 0x0B.
Note: In this example, ''11" is a decimal value that needs to be
converted into the hexadecimal equivalent 0x0B.

DATA[2] Write the 8 high bits of register data (hexadecimal)

DATA[3] Write the 8 low bits of register data (hexadecimal)

CRCL CRC valid byte (low 8 bits).

CRCH CRC valid byte (high 8 bits).

END Equal to or larger than 3.5‑character idle time, indicating the end of
a frame

Response frame format:

Value Description

START Equal to or larger than 3.5‑character idle time, indicating the start of
a frame

ADDR Servo axis address, hexadecimal
CMD Command code: 0x06

DATA[0]

Register start address (eight high bits): parameter group number of
the start register
Take H06.11 as an example, "06" is the group number, which means
DATA[0] = 0x06.
Note: In this example, "06" is a hexadecimal value that needs
no conversion.

DATA[1]

Register start address (eight low bits): offset within the parameter
group of the start register
Take H06.11 as an example, "11" is the offset within the parameter
group, which means DATA[1] = 0x0B.
Note: In this example, ''11" is a decimal value that needs to be
converted into the hexadecimal equivalent 0x0B.

DATA[2] Write the 8 high bits of register data (hexadecimal)

DATA[3] Write the 8 low bits of register data (hexadecimal)

CRCL CRC valid byte (low 8 bits).

CRCH CRC valid byte (high 8 bits).

END Equal to or larger than 3.5‑character idle time, indicating the end of
a frame



Modbus Communication [P]

‑23‑

Communication example

To write data 0x0001 to H02.02 in the drive whose servo axis address is 01:

Master request frame

01 06 02 02 00 01 CRCL CRCH

Slave response frame:

01 06 02 02 00 01 CRCL CRCH

This response frame indicates 0x0001 has been written to H02.02 in the drive whose
servo axis address is 01.

If the slave response frame is as follows:

01 86 02 CRCL CRCH

This response frame indicates a communication error occurs and the error code is
0x02. (0x86 indicates an error.)

Command code for writing 32-bit parameters: 0x10

Do not write 16‑bit parameters with the command code 0x10. Failure to comply can result
in unexpected error.

Request frame format:

Value Description

START Equal to or larger than 3.5‑character idle time, indicating the start of
a frame

ADDR
Servo axis address 1 to 247
Note: 1 to 247 are decimal values which need to be converted
into hexadecimal equivalents.

CMD Command code: 0x10

DATA[0]

Register start address (eight high bits): parameter group number of
the start register
Take H11.12 as an example, "11" is the group number, which means
DATA[0] = 0x11.
Note: In this example, "11" is a hexadecimal value that needs
no conversion.



Modbus Communication [P]

‑24‑

Value Description

DATA[1]

Register start address (eight low bits): offset within the parameter
group of the start register
Take H11.12 as an example, "12" is the offset within the parameter
group, which means DATA[1] = 0x0C.
Note: In this example, ''12" is a decimal value that needs to be
converted into the hexadecimal equivalent 0x0C.

DATA[2]

Write the eight high bits M (H) of the number of parameters
(hexadecimal)
Take H05.07 as an example, DATA[2] is 00, DATA[3] is 02, and M is
H0002.
For 32-bit parameters, each parameter is calculated as two
words.

DATA[3] Write the eight low bits M (L) of the number of parameters
(hexadecimal)

DATA[4] Write the number of bytes (M x 2) corresponding to the register data
Take H05.07 as an example, DATA[4] is H04.

DATA[5] Write the eight high bits of the start register data (hexadecimal)

DATA[6] Write the eight low bits of the start register data (hexadecimal)

DATA[7] Write the eight high bits of the start register address +1
(hexadecimal)

DATA[8] Write the eight low bits of the start register address +1
(hexadecimal)

CRCL CRC valid byte (low 8 bits).

CRCH CRC valid byte (high 8 bits).

END Equal to or larger than 3.5‑character idle time, indicating the end of
a frame

Response frame format:

Value Description

START Equal to or larger than 3.5‑character idle time, indicating the start of
a frame

ADDR Servo axis address, hexadecimal
CMD Command code: 0x10

DATA[0]
Register start address (eight high bits): offset within the parameter
group of the start register
Take H11.12 as an example, DATA[0] = 0x11.

DATA[1]
Register start address (eight low bits): offset within the parameter
group of the start register
Take H11.12 as an example, DATA[1] = 0x0C.

DATA[2] Write the eight high bits M (H) of the number of parameters
(hexadecimal)

DATA[3] Write the eight low bits M (L) of the number of parameters
(hexadecimal)



Modbus Communication [P]

‑25‑

Value Description

CRCL CRC valid byte (low 8 bits).

CRCH CRC valid byte (high 8 bits).

END Equal to or larger than 3.5‑character idle time, indicating the end of
a frame

Error response frame
Error frame response format:

Value

START Equal to or larger than 3.5‑character idle time, indicating the start of
a frame

ADDR Servo axis address, hexadecimal
CMD Command code: 0x80
DATA[0]...[3] DATA error code.
CRCL CRC valid byte (low 8 bits).

CRCH CRC valid byte (high 8 bits).

END Equal to or larger than 3.5‑character idle time, indicating the end of
a frame

Error code:

Error code Description
0x0001 Invalid command code
0x0002 Illegal data address

0x0003 Illegal data
0x0004 Slave device fault

32-bit parameter addressing
When 32‑bit parameters are read/written through Modbus commands, the
communication address is determined by the address of the parameter with lower
offset number. Two offset numbers are operated in one operation.

Note
In the following examples, the servo axis address is 01 by default.

● The Modbus command for reading H11.12 (Displacement 1) is as follows:

01 03 11 0C 00 02 CRCL CRCH

If the "1st displacement" is 0x40000000 (decimal equivalent: 1073741824), then the
following response frames apply:



Modbus Communication [P]

‑26‑

■ When H0E.84 is set to 1 (Low 16 bits before high 16 bits), the response frame is
as follows.

01 03 04 00 00 40 00 CRCL CRCH

■ When H0E.84 is set to 0 (High 16 bits before low 16 bits), the response frame is
as follows.

01 03 04 40 00 00 00 CRCL CRCH

● For example, the Modbus command for writing 0x12345678 to H11.12
(Displacement 1) is as follows.

■ If H0E.84 = 1 (Low 16 bits before high 16 bits):

01 10 11 0C 00 02 04 56 78 12 34 CRCL CRCH

■ If H0E.84 = 0 (High 16 bits before low 16 bits):

01 10 11 0C 00 02 04 12 34 56 78 CRCL CRCH

● For example, to write 0x00100000 (decimal: 1048576) to the 32‑bit parameter H05‑
07:
When H0E.84 is set to 0 (High 16 bits before low 16 bits), the response frame is as
follows.

01 10 05 07 00 02 04 00 00 00 10 CRCL CRCH

CRC check
The host controller and the drive must use the same CRC algorithm during
communication. Otherwise, a CRC error can occur. The servo drive uses 16‑bit CRC
with low byte before high byte. The CRC function is as follows: The polynomial used
for CRC is X16 + X15+ X2 + 1 (0xA001).



Modbus Communication [P]

‑27‑

2.5 Communication Parameters

Parameter
Default
Value

Description Remarks

H0E.00 1 Drive axis address ‑
H0E.80 9 Baud rate of the serial port 9: 115200 bps



Modbus Communication [P]

‑28‑

Parameter
Default
Value

Description Remarks

H0E.81 3 Modbus communication data
format

3: No parity, 1 stop bit (8‑N‑1)

H0E.84 1
Modbus communication data
sequence

0: High bits before low bits
1: Low bits before high bits



CANopen Communication [P]

‑29‑

3 CANopen Communication [P]

3.1 Communication

3.1.1 Communication Technical Data

Item Name Description

Parameter setting
Node address switching The node address can only be set

manually. The maximum value is 127.

Baud rate switching The baud rate can only be set
manually.

Description of state
machine

State description/display
of communication layer

Initializing, Pre‑Operational,
Operational, Stopped

Description/display of
emergency error codes

Time‑Out, State‑Switch‑Err, PTO‑Lend‑
Err

Error frame recording Reception error frames
can be recorded.

Count of NMT frames with incorrect
length
Count of NMT frames with incorrect
command
Count of heartbeat/node protection
frames with incorrect length

Sync deviation
detection

Multi‑quantile sync
deviation detection

1/4‑period deviation
1/2‑period deviation
3/4‑period deviation
1‑period deviation
2‑period deviation

Baud rate 20K‑1M baud rate
20Kbps, 50Kbps, 100Kbps, 125Kbps,
250Kbps, 500Kbps, 1Mbps

SYNC
SYNC Producer Synchronous frame production

SYNC Consumer Synchronous signal consumption with
deviation detection

SDO
Start domain upload/
download

Transmit data ≤ 4 bytes

SDO abort error Report an SDO error code contextually

PDO

Synchronous TPDO
The sync number is 1–240. The default
number of TPDOs/RPDOs is 4, which
can be configured.

Asynchronous TPDO
Time‑triggered by time. The default
number of TPDOs/RPDOs is 4, which
can be configured.



CANopen Communication [P]

‑30‑

Item Name Description

EMCY Emergency message
Heartbeat timeout, PDO length error,
node state switching error, application
layer error

NMT Bootup Service Support for node online message
transmit

NMTErrCtl
Life Guard

Optional node protection (cannot be
used with heartbeat production)

Heartbeat Consumer Node heartbeat consumption

Heartbeat Producer Node heartbeat production

Expert mode

PDO communication
parameters and their
mapping are set through
parameters.

PDO communication parameters and
their mapping are set manually.

3.1.2 Protocols

CANopen is a protocol for the application layer of the network transmission system
based on CAN serial bus. It complies with the ISO/ OSI standard model. Different
devices in the network exchange data through the object dictionary or objects. The
master node obtains or modifies data in the object dictionary of other nodes through
PDO or SDO. The CANopen device model is shown in the following figure.

Figure 3‑1 CANopen device model

3.2 Hardware Configuration

3.2.1 Terminal Layout

For details, see "2.2.1 Terminal Layout" on page 15.

3.2.2 CAN Communication Connection Example

CAN communication with PLC
The following figure shows the cable used for the communication between the servo
drive and PLC in CAN communication networking.



CANopen Communication [P]

‑31‑

Figure 3‑2 Outline drawing of cable used for CAN communication between the servo drive

and PLC

Use a three‑conductor shielded cable to connect the CAN bus, with the three
conductors connected to CANH, CANL, and CGND (CGND represents isolated RS485
circuit) respectively. Connect CANH and CANL with twisted pairs. Connect CGND to
the CAN reference ground. Connect the shield to the device ground. Connect a 120Ω
termination resistor on each end of the bus to prevent CAN signal reflection.

Table 3–1 Pin connection relation of the cable used for CAN communication between the
servo drive and PLC

RJ45 on the Drive Side (A) PLC Side (B)
Communi
cation
Type

Pin No. Description
Communi
cation
Type

Pin No. Description

CAN
1 CANH

CAN
1 CANH

2 CANL 2 CANL
3 CGND 3 CGND

‑ Enclosure PE (shield layer) ‑ Enclosure PE (shield layer)

CAN communication connection for multi-CAN applications
The following figure shows the cable used for parallel connection of multiple servo
drives during CAN communication.

Figure 3‑3 Outline drawing of multi‑drive communication cable



CANopen Communication [P]

‑32‑

Table 3–2 Pin connection relation of multi‑drive communication cable (pins in CAN group
used only)

RJ45 on the Drive (A) RJ45 on the Drive Side (B)
Communi
cation
Type

Pin No. Description
Communi
cation
Type

Pin No. Description

CAN
1 CANH

CAN
1 CANH

2 CANL 2 CANL
3 CGND 3 CGND

‑ Enclosure PE (shield layer) ‑ Enclosure PE (shield layer)

Use the daisy chain mode for CAN bus, as shown in the following figure.

● Shielded twisted pair cables are recommended for connecting the CAN bus.
Twisted pairs are recommended for connecting CANH and CANL.

● Connect a 120Ω termination resistor on each end of the bus to prevent signal
reflection.

● Connect the reference grounds of CAN signals of all the nodes together.
● Up to 64 nodes can be connected.

Figure 3‑4 CAN bus topology

Do not connect the CGND terminal of the host controller to the GND terminal of the servo
drive. Otherwise, the servo drive may be damaged.



CANopen Communication [P]

‑33‑

3.3 Communication Transmission Mode
CANopen provides multiple communication objects. Every communication object has
different features. You can select a communication object according to different
applications. The predefined COB‑ID is used. Specific rules are as follows:

● NMT object: 0x000
● SYNC object: 0x080
● SDO object:

■ Transmit SDO— 0x600+Node‑Id
■ Receive SDO— 0x580+Node‑Id

● PDO object:

■ RPDO1— 0x200+Node‑Id
■ RPDO1— 0x300+Node‑Id
■ RPDO1— 0x400+Node‑Id
■ RPDO1— 0x500+Node‑Id
■ RPDO1— 0x180+Node‑Id
■ RPDO1— 0x280+Node‑Id
■ RPDO1— 0x380+Node‑Id
■ RPDO1— 0x480+Node‑Id

● EMCY object: 0x80+Node‑Id

Communication objects are defined as follows:

● NMT
A network management object (NMT) includes Boot‑up messages, Heartbeat
protocol, and NMT messages. Based on the master‑slave mode, an NMT is used to
manage and monitor nodes in the network and implements three functions: node
status control, error control, and node activation.

● SDO
By using indexes and sub‑indexes, SDOs enable clients to access entries in the
object dictionary of devices. An SDO is achieved through a CMS object of the multi‑
element domain in CAL and transmitting data in any length is allowed. When the
data exceeds four bytes, the data is divided into several packets. The SDO protocol
produces a response for every message. SDO request and response packets alway
contain eight bytes.

● PDO
A PDO is used to transmit real‑time data from one creator to one or multiple
receivers. The length of transmitted data ranges from one to eight bytes. Every
CANopen device contains eight default PDO channels, four PDO sending channels
and four PDO receiving channels. The PDO supports synchronous and
asynchronous transmission modes, which are determined by the communication



CANopen Communication [P]

‑34‑

parameter corresponding to the PDO. The content of a PDO message is pre‑
defined and is determined by the mapping parameter corresponding to the PDO.

● SYNC object
An SYNC object is a packet that is broadcast to the CAN bus periodically by the
CANopen master. It is used to achieve basic network clock signals. Every device
can determine whether to perform synchronous communication with other
network devices using this event according to its own configurations.

3.4 Data Frame Structure

3.4.1 Network Management System (NMT)

The NMT initializes, starts, and stops the network and devices in the network. It
belongs to the master‑slave system. There is only one NMT master in the CANopen
network. A CANopen network that includes the master can be configured.

NMT Service
CANopen works according to the state machine specified by the protocol. Some
states are converted automatically and some must be converted through NMT
messages transmitted by the NMT master, as shown below.

Figure 3‑5 Execution process of NMT state machine



CANopen Communication [P]

‑35‑

In the figure above, conversion marked with a letter is implemented through NMT
messages and only the NMT master can send NMT control messages. The message
format is shown in "Table 3–3 " on page 35.

Table 3–3 NMT message format

COB‑ID RTR
Data/Byte

0 1
0x000 0 Command word Node_ID

The COB‑ID of the NMT message is fixed to "0x000".

The data area contains two bytes. The first byte is a command word indicating this
frame is for control purpose. See "Table 3–4 " on page 35 for details.

The second byte (Node_ID) is the CANopen node address. The byte value 0 indicates
it is a broadcast message and all slave devices in the network are active.

Table 3–4 NMT message command

Command word Conversion Code Description

0x01 A Instruction for starting a remote node

0x02 B Instruction for stopping a remote node

0x80 C Instruction for entering the pre‑operational
status

0x81 D Instruction for resetting a node

0x82 E Instruction for resetting communication

After power‑on, the device automatically enters the initialization state, including
initializing, node reset, and communication reset. During initializing, parameters of
each mode is loaded. During node reset, the manufacturer‑defined area and profile
area of the object dictionary are restored to values saved last time. During
communication reset, communication parameters in the object dictionary are
restored to values saved last time.

Next, the device sends Boot‑up and enters the pre‑operation status, which is the
status of the main configuration nodes.

After configuration is done, the node can enter the operational status only after the
NMT master sends the NMT message. When CANopen is working properly, it is in the
operation status. All modules should work properly.

When the NMT master sends a node stop message, the device enters the stop state
and only the NMT module works normally during CANopen communication.

The following table lists CANopen services available in various NMT status.



CANopen Communication [P]

‑36‑

Table 3–5 Services supported in different NMT states

Service Pre‑operational Operation Stop
Process Data Object
(PDO) No Yes No

Service data object
(SDO) Yes Yes No

Synchronization
Object (SYNC) Yes Yes No

Emergency message
(EMCY) Yes Yes No

Network
Management System
(NMT)

Yes Yes Yes

Error control Yes Yes Yes

NMT error control
NMT error control is used to detect whether devices in the network are online and the
device status, including node guarding, life guarding, and heartbeat.

Note
● Life guarding and heartbeat cannot be used at the same time.
● Set the node guarding, life guarding, and heartbeat time to large values to prevent

excessive network load.

● Node/life guarding
In node guarding, the NMT master periodically check the NMT slave state through
remote frames. In life guarding, the slave monitors the master state indirectly
through the remote frame interval used to monitor the slave. Node guarding
complies with the master/slave model. A response must be provided for each
remote frame.

Objects related to node/life guarding include the protection time 100Ch and life
factor 100Dh. The value of 100Ch is the remote frame interval (ms) of node
guarding under normal conditions. The product of 100Ch multiplied by 100Dh
determines the latest time of master query. Node guarding is available normally.
When 100Ch and 100Dh of a node are non‑zero values and a node guarding
request frame is received, life guarding will be activated.



CANopen Communication [P]

‑37‑

Figure 3‑6 Description of node protection

As shown in the figure above, the master sends a node guarding remote frame at
the interval defined by 100Ch, and the slave must respond to the remote frame.
Otherwise, the slave is considered to be offline.

If the node guarding remote frame is not received by the slave within the time
defined by 100Ch × 100Dh, the master is considered to be offline.

The following table describes the remote frame sent by the NMT master node.
Table 3–6 Node guarding remote frame message

COB‑ID RTR
0x700+Node_ID 1

The following table describes the response message returned by NMT from the
slave. The data segment is a status word consisting of one byte.

Table 3–7 Response message of node guarding

COB‑ID RTR Data
0x700 + Node‑ID 0 Status word

Table 3–8 Description of response message state

Data bits Description

bit7 It must be set to 0 or 1 alternatively.

Bit 6 to bit 0
4: Stopped
5: Operation status
127: Pre‑operation status



CANopen Communication [P]

‑38‑

It is recommended that the guarding time (100Ch) be at least 10 ms. The life factor must be
greater than or equal to 2.

● Heartbeat
The heartbeat mode adopts the producer—consumer model. The CANopen device
can send heartbeat messages based on the cycle (ms) defined by the producer
heartbeat interval object (1017h). In the network, there is always a node
configured with the consumer heartbeat function, which monitors the producer
based on the consumer time defined by object 1016h. Once the producer
heartbeat is not received from the corresponding node within the consumer
heartbeat time, a fault occurs on the node.

After the producer heartbeat interval (1017h) is configured, the node heartbeat
function is activated and a heartbeat message starts to be generated. After a valid
sub‑index is configured for consumer heartbeat (1016h) and a heartbeat frame is
received from the corresponding node, monitoring starts.

Figure 3‑7 Heartbeat diagram

The master sends a heartbeat message based on the producer time. If the slave
that monitors the master does not receive the heartbeat message within the time
defined by the sub‑index of 1016h , the master is considered to be offline. The time
of the sub‑index of 1016h must be longer than or equal to the master producer



CANopen Communication [P]

‑39‑

time multiplied by 1.8. Otherwise, a false report indicating the master is offline
may occur.

The slave sends a heartbeat message at the interval defined by 1017h. If the
master (or other slave) that monitors the slave does not receive the heartbeat
message within the consumer time, the slave is considered to be offline. If 1017h
multiplied by 1.8 is smaller than or equal to the consumer time of the master (or
other slaves) that monitors the slave, a false report indicating the slave is
disconnected may be reported.

The following table describes the format of a heartbeat message. The data
segment contains only one byte. The most significant bit is permanently set to 0
and other bits are consistent with the response message status of node guarding,
as shown in the following table.

Table 3–9 Heartbeat message

COB‑ID RTR Data
0x700 + Node‑ID 0 Status word

The SV680P‑INT series servo drive is both a heartbeat producer and a heartbeat
consumer. It can serve as the heartbeat consumer for five different nodes. It is
recommended that the heartbeat producer time be set to a value not lower than
20 ms and the consumer heartbeat time be set to a value not lower than 40 ms
(Consumer heartbeat time ＞ 1.8 x Producer heartbeat time).

3.4.2 Service data object (SDO)

The SDO is associated with the object dictionary through object index and sub‑index.
Based on the SDO can read the object content in the object dictionary or modify the
object data if allowed.

3.4.3 Process Data Object (PDO)

The PDO is used to transmit real‑time data, which is the major data transmission
mode in CANopen. PDO transmission features high speed as no response is required
and the PDO may consist of less than eight bytes.

The following figure shows the PDO mapping configuration flowchart.



CANopen Communication [P]

‑40‑

PDO transmission framework
PDO transmission complies with the producer‑ consumer model, that is, in the CAN
bus network, the TPDO generated by the producer may be received by one or
multiple consumers in the network based on the COB‑ID. The transmission model is
shown in the following figure.

Figure 3‑8 PDO transmission model

CANopen communication in SV680P‑INT series servo drives only supports point‑to‑
point PDO transmission.

PDO object
PDO can be divided into RPDO (Receive PDO) and TPDO (Transmitted PDO). The final
PDO transmission mode and content are determined by communication parameters



CANopen Communication [P]

‑41‑

and mapping parameters. The SV680P‑INT series servo drive uses four RPDOs and
four TPDOs to transmit the PDO. The following table lists the related objects.

Table 3–10 PDOs of SV680P‑INT servo drives

Name COB‑ID
Communication

Object
Mapping Object

RPDO

1 200h + Node_ID 1400h 1600h
2 300h + Node_ID 1401h 1601h
3 400h + Node_ID 1402h 1602h
4 500h + Node_ID 1403h 1603h

TPDO

1 180h + Node_ID 1800h 1A00h
2 280h + Node_ID 1801h 1A01h
3 380h + Node_ID 1802h 1A02h
4 480h + Node_ID 1803h 1A03h

PDO Communication Parameters
● CAN Identifier for PDO

The CAN identifier of a PDO, namely COB‑ID, includes a control bit and identifier
data and determines the bus priority of the PDO.

The COB‑ID is in the sub‑index 01 of communication parameters (RPDO: 1400h to
1403h; TPDO: 1800h to 1803h). The most significant bit decides whether the PDO is
valid.

Figure 3‑9 Description of PDO validity

The SV680P‑INT servo drive only supports point‑to‑point PDO transmission.
Therefore, the seven least significant bits of the COB‑ID must be the station
address of the node.

Example:

For the node whose station No. is 4, when TPDO3 is invalid, its COB‑ID should be
80000384h. When 384h is written for the COB‑ID, it indicates the PDO is activated.

● Transmission type of PDO
The PDO transmission type parameter is in the sub‑index 02h of communication
parameters (RPDO: 1400h–1403h, TPDO: 1800h–1803h). It determines the
transmission type of the PDO.



CANopen Communication [P]

‑42‑

Figure 3‑10 Supported PDO transmission mode

Communication parameters (RPDO: 1400h–1403h, TPDO: 1800H–1803h) Different
values of the sub‑index 02 stand for different transmission types and define the
methods for triggering TPDO transmission or methods for processing received
RPDOs. Table 3‑26 lists methods for triggering TPDO and RPDO.

Table 3–11 Triggering Methods of TPDO and RPDO

Value of
Communication

Type

Synchronous
Asynchronous

Cyclic Acyclic

0 ‑ ✓ ‑
1–240 ✓ ‑ ‑

241–253 ‑
254, 255 ‑ ‑ ✓

■ When the transmission type of a TPDO is 0, if mapping data is changed and a
synchronous frame is received, the TPDO is sent.

■ When the transmission type of a TPDO is a value in the range 1 to 240 and a
corresponding number of synchronous frames are received, the TPDO is sent.

■ When the transmission type of a TPDO is 254 or 255, if mapping data is
changed or the event timer expires, the TPDO is sent.

■ When the transmission type of an RPDO is a value in the range 0 to 240, once a
synchronous frame is received, the latest data of the RPDO is updated to the
application; when the transmission RPDO of an RPDO is 254 or 255, the
received data is directly updated to the application.

● Disabled time
The disabled time is set for TPDOs and is stored on the sub‑index 03h of
communication parameters (1800h to 1803h) to prevent the CAN from being
continuously occupied by PDO with lower priorities. After the parameter (unit: 100
us) is set, the transmission interval of one TPDO must be longer than or equal to
the time corresponding to this parameter.

Example: If the inhibit time of TPDO2 is 300 ms, the transmission interval of TPDOs
is no shorter than 30 ms.

● Event timer



CANopen Communication [P]

‑43‑

For TPDO transmitted in asynchronous mode (transmission types 254 or 255), the
event timer is defined in sub‑index 05 of communication parameters (1800h–
1803h). The event timer can be considered as a trigger event. It also triggers
corresponding TPDO transmission. If another event, for example, data change,
occurs in the operation cycle of the event timer, the TPDO is triggered and the
event timer is reset immediately.

PDOmapping parameter
PDO mapping parameters include pointers of process data that corresponds to PDO
and that is to be sent or received by PDO, including index, sub‑index, and mapping
object length. The length of each PDO data can be up to eight bytes and one or
multiple objects can be mapped. The sub‑index 00 records the number of objects
mapped by the PDO and the sub‑indexes 01...08 are the mapping content.

The following takes 1600h as an example.

Table 3–12 Description of PDO mapping relation

Index Sub‑index Description

1600h

00 Number of mapped objects
01

Content of mapping parameter…
08

Table 3–13 Definition of PDO mapping parameters

Places 31 … 16 15 … 8 7 … 0
Descrip
tion Index Sub‑index Object Length

The index and sub‑index together define the position of an object in the object
dictionary. The object length indicates the bit length of the object in hexadecimal, as
shown below.

Table 3–14 Relation between object length and object bit length

Object Length Bit Length
08h 8‑bit
10h 16‑bit
20h 32‑bit

For example: the mapping parameter of the 16‑bit command word 6040.00h is
60400010h.

The following example describes the PDO mapping relation.

Example:



CANopen Communication [P]

‑44‑

RPDO1 maps the following three parameters.

Figure 3‑11 Example of PDO1 mapping

Then, the mapping length is seven bytes (2+1+4), namely there are seven bytes in the
data segment of RPDO1 during transmission. The mapping relation is shown in the
following figure.

Figure 3‑12 Example of RPDO mapping relation

The mapping mode of TPDO is the same as that of RPDO, but in the opposite
direction. The RPDO decodes the input based on the mapping relation. The TPDO
encodes the output based on the mapping relation.

Example:

TPDO2 maps the following two parameters.



CANopen Communication [P]

‑45‑

Figure 3‑13 Example of TPDO2 mapping relation

Then, the mapping length is four bytes (2+2), namely there are four bytes in the data
segment of TPDO2 during transmission. The mapping relation is shown in the
following figure.

Figure 3‑14 Example of TPDO mapping relation

3.4.4 Synchronization Object (SYNC)

The SYNC object is a special mechanism that controls harmony and synchronization
between transmission and reception of multiple nodes. It is used for synchronous
transmission of the PDO.

The following figure shows the configuration flowchart of the Sync generator.



CANopen Communication [P]

‑46‑

Figure 3‑15 Synchronization generator configuration flowchart

Note
The SV680P‑INT series does not support the Sync generator with cycle lower than 500 us.
Synchronization cycles lower than 1 ms are not recommended.

Sync generator
The SV680P‑INT servo drive is both a synchronization consumer and a
synchronization producer. The objects related to synchronization are synchronization
object COB‑ID (1005h) and synchronization cycle (1006h).

Figure 3‑16 Description of supported objects related to synchronization

The second most significant bit of the synchronization object COB‑ID determines
whether to activate the Sync generator.



CANopen Communication [P]

‑47‑

Figure 3‑17 Activating the synchronization generator

The synchronization cycle (unit: us) is only used for the Sync generator. It indicates
the interval of the node in generating the synchronization object.

Synchronization object transmission framework
Synchronization objects are transmitted based on the producer‑consumer model,
which is similar to PDO transmission. The synchronization producer sends a
synchronous frame, and other nodes in the CAN network can receive this frame as
consumers, without the need to provide any feedback. Only one Sync generator is
allowed to be activated in one CAN network. The following figure shows the
transmission framework of synchronization objects.

Figure 3‑18 Synchronization transmission framework

Transmission of synchronous PDO is closely related to the synchronous frame.

● For an RPDO, so long as the PDO is received, the received PDO is updated to the
application in the next synchronization.

● A synchronization TPDO can be transmitted in cyclic synchronization mode or
acyclic synchronization mode.

Figure 3‑19 Description of synchronization TPDO

The following figure shows the synchronous transmission model.



CANopen Communication [P]

‑48‑

Figure 3‑20 Synchronous transmission model

Example:

RPDO1 has a transmission type of 0, RPDO2 has a transmission type of 5, TPDO1 has a
transmission type of 0, and TPDO2 has a transmission type of 20. Once RPDO1 and
RPDO2 receive the PDO, the latest PDO data will be updated to the corresponding
application in the next synchronization. Once the mapping data of TPDO1 changes,
TPDO1 will be transmitted in the next synchronization. After TPDO2 experiences 20
SYNC, the PDO will be transmitted no matter whether the data changes.

3.4.5 Emergency (EMCY) Object Service

When an error occurs in a CANopen node, the node sends an emergency message
according to the standard mechanism. The emergency message complies with the
producer‑consumer model. After the node fault is sent, other nodes in the CAN
network may handle the fault. The SV680P‑INT series servo drive only serves as the
emergency message producer, which means it does not process emergency messages
of other nodes.

Figure 3‑21 Description of objects related to emergency messages

When a fault occurs on the node, the error register and the pre‑defined error field
must be updated no matter whether the emergency object is activated. The content
of the emergency message follows the following specifications.

Table 3–15 Specifications of the content of an emergency message

COB‑ID 0 1 2 3 4 5 6 7

80h + Node_ID Error code
Error

register
Re

served
Auxiliary byte



CANopen Communication [P]

‑49‑

● The error register is always consistent with 1001h.
● When a communication error occurs, the error code is consistent with the one

required by DS301 and the auxiliary byte is 0.
● When the error described in the DSP402 sub‑protocol occurs on the servo drive,

the error code is consistent with DS402 requirements and corresponds to the
object 603Fh. The auxiliary byte is extra descriptions.

● When an error specified by the user occurs on the servo drive, the error code is
0xFF00 and the auxiliary byte displays the error code specified by the user.

3.4.6 SDO Transmission Message

SDO transmission include transmission of object data with no more than four bytes
and those with more than four bytes. Object data with no more than four bytes are
transmitted in the expedited SDO mode. Object data with more than four bytes are
transmitted in the segmented SDO mode or block mode.

The SV680P‑INT supports expedited SDO transfer and segmented SDO transfer only.

An SDO transmission message consists of a COB‑ID and a data segment. As shown in
the following table, the COB‑ID of T_SDO and R_SDO messages are different.

The data segment adopts the little endian mode, in which least significant bits are
arranged in front of most significant bits. The data segment of all SDO messages must
consist of eight bytes. The following table describes the format of SDO transmission
message.

Table 3–16 Description of SDO transmission message format

COB‑ID Data (data segment)

580h+Node_ID 0 1 2 3 4 5 6 7

600h+Node_ID
Command

code
Index Sub‑index Data

The command code specifies the transmission type and transmission data length of
the SDO. The index and sub‑index indicate the position of the SDO in the list; the data
indicates the value of the SDO.

Message written in expedited SDOmode
Expedited SDO transfer is used for reading/writing the object message with no more
than four bytes. The transmission message varies the read/write mode and data
length. The following table describes the message written in the expedited SDO
mode.



CANopen Communication [P]

‑50‑

Table 3–17 Description

COB‑ID 0 1 2 3 4 5 6 7

Client→ 600h+Node_ID

23h

Index Sub‑index

Data

27h Data ‑
2bh Data ‑ ‑
2fh Data ‑ ‑ ‑

←Server
Normal

580h+Node_ID
60h

Index Sub‑index
‑ ‑ ‑ ‑

Abnor
mal

80h Abort Code

Note
"‑" indicates that data exists but is not considered. It is recommended that value 0 be writ‑
ten for the data. The same rule applies to the following descriptions in this section.

Example:

If the slave station No. is 4 and SDO is used to write the speed value (60FF.00h) in the
speed mode, write 1000 (namely 0x3E8). The message sent by the master is shown in
the following table. (All data are in hexadecimal format.)

Table 3–18 Example of a message sent by the master

COB‑ID 0 1 2 3 4 5 6 7
604 23 FF 60 00 E8 03 00 00

If the value is written successfully, the servo drive returns the following message.

Table 3–19 Example of a message returned by the servo drive upon normal write operation

COB‑ID 0 1 2 3 4 5 6 7
584 60 FF 60 00 00 00 00 00

If the type of the data written does not match, the fault code 0x06070010 is returned.
The message is as follows.

Table 3–20 Example of a message returned upon mismatch of the written data type

COB‑ID 0 1 2 3 4 5 6 7
584 80 FF 60 00 10 00 07 06

Message written in expedited SDOmode
Object message with no more than four bytes are read in the expedited SDO mode.
The following table describes the message written in the expedited SDO mode.



CANopen Communication [P]

‑51‑

Table 3–21 Structure of an SDO start packet transmitted

COB‑ID 0 1 2 3 4 5 6 7

Client→ 600h+Node_ID 40h Index Sub‑index ‑ ‑ ‑ ‑

←Server
Normal

580h+Node_ID
41h

Index Sub‑index

Data Length

Abnor
mal

80h Abort Code

During transmission, the trigger bit (bit6) of the command code sends 0 or 1
alternatively. This rule must be maintained so that the slave can respond to the
message. The structure of the process message is shown in the following table.

Table 3–22 Structure of a message during SDO transmission

COB‑ID 0 1 2 3 4 5 6 7

Client→ 600h+Node_ID 60h ‑ ‑ ‑ ‑ ‑ ‑ ‑

←Server
Normal

580h+Node_ID
00h Data Length

Abnor
mal

80h Index 　 Sub‑index Abort Code

Client→ 600h+Node_ID 70h ‑ ‑ ‑ ‑ ‑ ‑ ‑

←Server
Normal

580h+Node_ID
10h Data Length

Abnor
mal

80h Index 　 Sub‑index Abort Code

The response packet of the end frame transmitted in segmented mode includes the
end frame identifier and valid data length of the end frame. The structure of its
transmission message is shown in the following table.

Table 3–23 Message structure of the last frame in SDO segmented transmission

COB‑ID 0 1 2 3 4 5 6 7

Client→ 600h+Node_ID 60h/70h Index Sub‑index ‑ ‑ ‑ ‑

←Server
Normal

580h+Node_ID

01h/11h Data

03h/13h Data ‑

05h/15h Data ‑ ‑

07h/17h Data ‑ ‑ ‑

09h/19h Data ‑ ‑ ‑ ‑

0Bh/1Bh Data ‑ ‑ ‑ ‑ ‑

0Dh/1Dh Data ‑ ‑ ‑ ‑ ‑ ‑

Abnor
mal

80h Index Sub‑index Abort Code

3.4.7 SDO transmission framework

SDO transmission complies with the client‑server mode, that is, one initiates a
request and the other responds to the request. The SDO client in the CAN bus
network initiates a request and the SDO server responds to the request. Therefore,



CANopen Communication [P]

‑52‑

data exchange between SDOs requires at least two CAN messages with different CAN
identifiers. The SDO transmission model is shown in the following figure.

Figure 3‑22 Object word in the SDO server read/written by the SDO client

3.5 Communication Parameters
To connect the servo drive to the CANopen fieldbus network, set related parameters
of the servo drive properly.

CANopen parameters:

Parame
ter

Communi
cation
Address

Name Value Default Unit
Change
Mode

H02.00 2002‑01h Control mode 0: Speed control mode
1: Position control mode
2: Torque control mode
3: Torque/Speed control mode
4: Speed/Position control mode
5: Torque/Position control mode
6: Torque/Speed/Position compound
mode
7: Process segment
8: CANopen mode

1 ‑ At stop

H0E.00 200E‑01h Node address 1 to 127 1 ‑ At stop

H0E.01 200E‑02h Save objects
written through
communication
to e2prom

0: Not save
1: Save parameters written through
communication to e2prom
2: Save object dictionaries written
through communication to e2prom
3: Save parameters and object
dictionaries written through
communication to e2prom
4: Save object dictionaries written
before communication (OP) to e2prom

1 ‑ Real‑time



CANopen Communication [P]

‑53‑

Parame
ter

Communi
cation
Address

Name Value Default Unit
Change
Mode

H0E.10 200E‑0Bh CAN selection 0: Pulse/Axis control command
1: Enhanced axis control command
2: CANopen

0 ‑ At stop

H0E.11 200E‑0Ch CAN baud rate 0: 20kbps
1: 50kbps
2: 100kbps
3: 125kbps
4: 250kbps
5: 500kbps
6: 1Mbps
7: 1Mbps

5 ‑ At stop

3.6 PN-to-CANopen bridge
H0E.11 sets the baud rate and H0E.10 sets the CAN station number. The SV680P‑INT
supports 4 RPDOs/TPDOs and 8‑bit/16‑bit/32‑bit data structures. Related parameter:



CANopen Communication [P]

‑54‑

2D address 2E address

OUT

RPDO1

Number of
Mapping Objects 2D‑20

INPUT

TPDO1

Number of
Mapping Objects 2E‑14

Mapped object 1
in RPDO1

2D‑21
Mapped object 1

in TPDO1
2E‑15

Mapped object 2
in RPDO1

2D‑23
Mapped object 2

in TPDO1
2E‑17

Mapped object 3
in RPDO1

2D‑25
Mapped object 3

in TPDO1
2E‑19

Mapped object 4
in RPDO1

2D‑27
Mapped object 4

in TPDO1
2E‑1B

Mapped object 5
in RPDO1

2D‑29
Mapped object 5

in TPDO1
2E‑1D

Mapped object 6
in RPDO1

2D‑2B
Mapped object 6

in TPDO1
2E‑1F

Mapped object 7
in RPDO1

2D‑2D
Mapped object 7

in TPDO1
2E‑21

Mapped object 8
in RPDO1

2D‑2F
Mapped object 8

in TPDO1
2E‑23

RPDO2

Number of
Mapping Objects 2D‑31

TPDO2

Number of
Mapping Objects 2E‑25

Mapped object 1
in RPDO2

2D‑32
Mapped object 1

in TPDO2
2E‑26

Mapped object 2
in RPDO2

2D‑34
Mapped object 2

in TPDO2
2E‑28

Mapped object 3
in RPDO2

2D‑36
Mapped object 3

in TPDO2
2E‑2A

Mapped object 4
in RPDO2

2D‑38
Mapped object 4

in TPDO2
2E‑2C

Mapped object 5
in RPDO2

2D‑3A
Mapped object 5

in TPDO2
2E‑2E

Mapped object 6
in RPDO2

2D‑3C
Mapped object 6

in TPDO2
2E‑30

Mapped object 7
in RPDO2

2D‑3E
Mapped object 7

in TPDO2
2E‑32

Mapped object 8
in RPDO2

2D‑40
Mapped object 8

in TPDO2
2E‑34



CANopen Communication [P]

‑55‑

2D address 2E address

OUT

RPDO3

Number of
Mapping Objects 2D‑42

INPUT

TPDO3

Number of
Mapping Objects 2E‑36

Mapped object 1
in RPDO3

2D‑43
Mapped object 1

in TPDO3
2E‑37

Mapped object 2
in RPDO3

2D‑45
Mapped object 2

in TPDO3
2E‑39

Mapped object 3
in RPDO3

2D‑47
Mapped object 3

in TPDO3
2E‑3B

Mapped object 4
in RPDO3

2D‑49
Mapped object 4

in TPDO3
2E‑3D

Mapped object 5
in RPDO3

2D‑4B
Mapped object 5

in TPDO3
2E‑3F

Mapped object 6
in RPDO3

2D‑4D
Mapped object 6

in TPDO3
2E‑41

Mapped object 7
in RPDO3

2D‑4F
Mapped object 7

in TPDO3
2E‑43

Mapped object 8
in RPDO3

2D‑51
Mapped object 8

in TPDO3
2E‑45

RPDO4

Number of
Mapping Objects 2D‑53

TPDO4

Number of
Mapping Objects 2E‑47

Mapped object 1
in RPDO4

2D‑54
Mapped object 1

in TPDO4
2E‑48

Mapped object 2
in RPDO4

2D‑56
Mapped object 2

in TPDO4
2E‑4A

Mapped object 3
in RPDO4

2D‑58
Mapped object 3

in TPDO4
2E‑4C

Mapped object 4
in RPDO4

2D‑5A
Mapped object 4

in TPDO4
2E‑4E

Mapped object 5
in RPDO4

2D‑5C
Mapped object 5

in TPDO4
2E‑50

Mapped object 6
in RPDO4

2D‑5E
Mapped object 6

in TPDO4
2E‑52

Mapped object 7
in RPDO4

2D‑60
Mapped object 7

in TPDO4
2E‑54

Mapped object 8
in RPDO4

2D‑62
Mapped object 8

in TPDO4
2E‑56

Note
● Ensure that the number of bytes in each PDO is no more than 8 bytes.
● For a PDO that does not involve communication, you must clear the value of the

parameter so that the device can run normally.
● The number of mappings must match the actual number.



EtherCAT Communication [N]

‑56‑

4 EtherCAT Communication [N]

4.1 Communication

4.1.1 Communication technical data

Item Specification

Ether
CAT
Basic
per
for
manc
e of
slave

Communication
protocol EtherCAT protocol

Service supported CoE (PDO, SDO)
Synchronization
mode

DC ‑ Distributed clock
FreeRun

Physical layer 100BASE‑TX
Baud rate 100 Mbit/s (100Base‑TX)
Duplex mode Full duplex
Topology Ring and linear
Transmission
medium

Shielded cables of Cat 5e or higher

Transmission
distance

Less than 100 m between two nodes (with proper
environment and cables)

Number of slaves Up to 65535 by protocol, not exceeding 100 in actual use
EtherCAT frame
length 44 bytes to 1498 bytes

Process data Max. 1,486 bytes per Ethernet frame
Synchronous jitter
of two slaves < 1 us

Update time
About 30 us for 1000 DI/DOs
About 100 µs for 100 servo axes
Define different update time for different interfaces.

Bit error rate 10‑10 Ethernet standard

Ether
CAT
Config
ura
tion
unit

Number of FMMU
units 8

Number of storage
synchronization
management units

8

Process data RAM 8 kB
Distributed Clock 64‑bit
EEPROM capacity 32 kbits



EtherCAT Communication [N]

‑57‑

4.1.2 Communication Specifications

Item Specification
Communication protocol IEC 61158 Type 12, IEC 61800‑7 CiA 402 Drive Profile

Application
layer

SDO SDO request, SDO response

PDO Variable PDO mapping

CiA402

Profile position mode (PP)
Profile velocity mode (PV)
Profile torque mode (PT)
Homing mode (HM)
Cyclic synchronous position mode (CSP)
Cyclic synchronous velocity mode (CSV)
Cyclic synchronous torque mode (CST)

Physical
layer

Transmis
sion
protocol

100BASE‑TX (IEEE802.3)

Maximum
distance 100 m

Interface RJ45 × 2 (IN, OUT)

4.1.3 Protocols

EtherCAT is an industrial Ethernet‑based fieldbus system that features high
performance, low cost, easy use and flexible topology. It is applicable to industrial
applications requiring ultra‑high speed I/O network. EtherCAT adopts standard
Ethernet physical layer with twisted pairs or optical fibers (100Base‑TX or 100Base‑FX)
used as the transmission media.



EtherCAT Communication [N]

‑58‑

An EtherCAT system includes the master and the slave. The master requires a
common network adapter, and the slave requires a special slave control chip, such as
ET1100, ET1200, and FPGA.

EtherCAT can process data at the I/O layer,

● without any sub‑bus
● or gateway delay
● One system covers all devices, including input/output devices, sensors, actuators,

drives, and displays……
● Transmission rate: 2 × 100 Mbit/s (high‑speed Ethernet, full duplex mode).
● Synchronization: synchronization jitter < 1 μs (number of nodes up to 300, cable

length within 120 m)

Update time:

256 DI/DOs: 11 μs

1000 DI/DOs distributed in 100 nodes: 30 μs = 0.03 ms

200 AI/AOs (16‑bit): 50 μs, sampling rate: 20 kHz

100 servo axes (8 bytes IN + 8 bytes OUT for each): 100 μs = 0.1 ms

12000 digital I/Os: 350 μs

To support more types of devices and applications, EtherCAT establishes the
following application protocols:



EtherCAT Communication [N]

‑59‑

● CANopen over EtherCAT (CoE)
● Safety over EtherCAT (SoE, compliant with IEC 61800‑7‑204)
● Ethernet over EtherCAT (EoE)
● File over EtherCAT (FoE)

The slave only needs to support the suitable application protocol.

Note
EtherCATR is registered trademark and patented technology, licensed by Beckhoff Automa‑
tion GmbH, Germany.

4.2 Hardware Configuration

4.2.1 Terminal Layout

Table 4–1 EtherCAT communication terminal pins

Pin No. Name Description

1 TD+ Data transmit positive

2 TD‑ Data transmit negative

3 RD+ Data reception+
4 and 5 ‑ ‑

6 RD‑ Data reception–
7 and 8 ‑ ‑

9 TD+ Data transmit positive

10 TD‑ Data transmit negative

11 RD+ Data reception+
12 and 13 ‑ ‑

14 RD‑ Data reception–
15 and 16 ‑ ‑



EtherCAT Communication [N]

‑60‑

4.2.2 EtherCAT Communication Connection Example

CN3 and CN4 are EtherCAT connectors. Connect CN4 (IN) to the communication port
of the master and CN3 (OUT) to the next slave. For assignment of CN3/CN4 terminal
pins, see "Table 4–1 EtherCAT communication terminal pins" on page 59.

Figure 4‑1 Wiring of communication cables

Topology
The communication topology of EtherCAT is flexible without any limit, as shown in
"Figure 4–2 Communication network topology" on page 61. The drive carries IN and
OUT ports.



EtherCAT Communication [N]

‑61‑

Figure 4‑2 Communication network topology

Linear topology



EtherCAT Communication [N]

‑62‑

Redundant ring topology

Note
When using the redundant ring, set H0E.36 (EtherCAT AL enhanced link) to 1 (Enable), then
power on the drive again.

4.3 Communication Transmission Mode

4.3.1 Structure of EtherCAT Communication

Multiple kinds of application protocols are available for EtherCAT communication.
The IEC 61800‑7 (CiA 402)‑CANopen motion control profile is used for SV680N‑INT
series servo drives. The following figure shows the EtherCAT communication structure
at the CANopen application layer.



EtherCAT Communication [N]

‑63‑

Figure 4‑3 EtherCAT communication structure at CANopen application layer

The object dictionary in the application layer includes communication parameters,
application process data and PDO mapping data. The process data object (PDO)
includes the real‑time data generated during operation, which is read and written
cyclically. In the SDO mailbox communication, the communication objects and PDO
objects are being accessed and modified non‑cyclically.

4.3.2 Communication State Machine

The following figure shows the status transition diagram of EtherCAT state machine.

Figure 4‑4 EtherCAT state machine



EtherCAT Communication [N]

‑64‑

The EtherCAT state machine must support the following four states and coordinate
the states between the master and slave application program during initialization and
operation.

● Init: initialization, shortened as I
● Pre‑Operational: pre‑operational, shortened as P
● Safe‑Operational: safe‑operational, shortened as S
● Operational: operational, shortened as O

Transition from Init state to Operational state must be in the sequence of Init→Pre‑
Operational→Safe→Operational, and then Operational step by step. In transition
from the Operational state to the Init state, certain steps can be skipped. The
following table lists the state transition and the initialization process.

Status SDO RPDO TPDO Description

Init (I) No No No

Communication initialization
No communication available in the application
layer, EtherCAT slave controller (ESC) register
can only be read/written by the master

IP No No No

The master configures the slave addresses,
mailboxes,
and distributed clocks (DCs).
Request the Pre‑Operational state.

Pre‑
Operation

al (P)
Yes No No

Mailbox data communication in the application
layer (SDO).

PS Yes No No

The master uses process data mapping of SDO
initialization.
The master configures the Sync Manager
channel used during process data
communication.
The master configures the FMMU.
Request the Safe‑Operational state.

Safe‑
Operation

al (S)
Yes No Yes SDO, TPDO, and distributed clock mode can be

used.

SO Yes No Yes
The master sends valid output data.
to request the Operational state.

Operation
al (O) Yes Yes Yes

Normal operational state
Both input and output are valid.
Mailbox communication can still be used.

4.3.3 Distributed clock

The distributed clock (DC) enables all EtherCAT devices to use the same system time
and allows synchronous execution of slave tasks. A slave produces the



EtherCAT Communication [N]

‑65‑

synchronization signal according to the synchronized system time. The SV680N‑INT
drive only supports the DC sync mode. The synchronization period, which is
controlled by SYNC0, varies with different motion modes.

Note
● The SYNC signal can be used to synchronize all the salves with an error less than 1

us. The master must synchronize all the slaves to the same clock and continues
doing so during operation to prevent clock skew caused by difference in the
crystal oscillator. This is usually done by synchronizing the 0x910 register in ESC.

● SYNC starting time = 0x990 register (with ESC) ‑ 0x920
Note that the DC mode (0x981 = 0x03) can be enabled only before 0x910 reaches
the starting time. If the starting time of SYNC is set improperly, the 0x134 status
register of ESC will report the error code of 0x2D.

4.3.4 Status Indication

Figure 4‑5 Status indication diagram

If the value 0 is displayed, it indicates no value is written or the value 0 is written to
6060h, or H02.00 is set to 0, 1 or 2.



EtherCAT Communication [N]

‑66‑

Communication connection status
For the SV680N‑INT, the connection status of the two RJ45 ports are indicated by "‑"
on the upper and lower part of the first LED on the keypad. The upper "‑" indicates
the status of CN3:PORT1, and the lower "‑" indicates the status of CN4:PORT0.

OFF: no communication connection is detected in the physical layer.

ON: communication connection is detected in the physical layer.

Communication status
The 2nd LED indicates the status of the EtherCAT state machine of the slave in the
form of characters, as described in the following table.

State of EtherCAT state machine

Status SDO RPDO TPDO Description Panel Display
Initializa
tion No No No Communication

initialization 1: Solid ON

Pre‑
operation
al

Yes No No
Network configuration
initialized
SDO is available

2: Blinks at an interval
of 400 ms

Safe‑
operation
al

Yes No Yes
SDO, TPDO, and
distributed clock
mode are available

4: Blinks with a period
of 1200 ms, on for 200
ms and off for 1000 ms

Operation Yes Yes Yes Normal operation
state 8: Solid ON

Display of control modes
The 3rd LED indicates the operation mode of the servo drive in the form of
hexadecimal without blinking, as described in the following table.

The operation modes include the following:

Modes of operation (6060h) Panel Display
1: Profile position mode 1
3: Profile velocity mode 3
4: Profile torque mode 4
6: Homing mode 6
8: Cyclic synchronous position mode 8
9: Cyclic synchronous velocity mode 9
10: Cyclic synchronous torque mode A

Display of servo status
The 4th and 5th LEDs indicate the servo status of the slave.

The statuses include the following:



EtherCAT Communication [N]

‑67‑

Status Description Panel Display
Reset Initialization reset

Not ready

Initialization is done. The
control circuit is switched on
but the main circuit is not
switched on.
Not ready

nr

Ready
The main circuit is switched on,
but the S‑ON signal is inactive.
Ready

ry
The character "y" blinks when the motor
speed is not 0 RPM.
When the communication layer is in the
pre‑operational or safe‑operational state,
the blinking frequency is the same as that
of characters "2" or "4" (see
"communication status" in the previous
page for details).
When the communication layer is in Init or
Operational state, the blinking frequency is
2 Hz.

Operation
The S‑ON signal is active and
the motor is energized.
Run

rn
The letter "n" blinks when the motor speed
is not 0 RPM.
When the communication layer is in the
pre‑operational or safe‑operational state,
the blinking frequency is the same as that
of characters "2" or "4" (see
"communication status" in the previous
page for details).
When the communication layer is in Init or
Operational state, the blinking frequency is
2 Hz.

Description of indicators

Figure 4‑6 Description of indicators



EtherCAT Communication [N]

‑68‑

Indicator Status Status Indication

RUN

OFF Initialization.
Blinking (on for 200
ms and off for
another 200 ms)

Pre‑Operational.

Single flash (on for
200 ms and off for
1000 ms)

Safe‑Operational.

ON Operational.

ERR

OFF No Network error.
Blinking (on for 200
ms and off for
another 200 ms)

Communication setting error.

Single flash (on for
200 ms and off for
1000 ms)

Sync event error.

Double flash (on for
200 ms and off for
200 ms, and then on
for 200 ms and off for
1000 ms)

Watchdog timeout.

L/A IN indicator[1]
L/A OUT indicator

OFF Link is not established.
Flickering (on for 50
ms and off for
another 50 ms)

Link is established. A data transceiving signal is
present.

ON
Link is established. No data transceiving signal
is present.

4.4 Data Frame Structure

4.4.1 Process data

The real‑time data transmission of EtherCAT is achieved through PDO. PDOs can be
divided into RPDOs (Receive PDO) and TPDOs (Transmit PDO) based on the data
transmission direction. RPDOs transmit the master data to the slave, and TPDOs
returns the slave data to the master.



EtherCAT Communication [N]

‑69‑

The SV680N‑INT series servo drive allows users to assign the PDO list and define the
PDO mapping objects.

PDOmapping
PDO mapping is used to establish the mapping relation between the object dictionary
and the PDO. 1600h to 17FFh are RPDOs, and 1A00h to 1BFFh are TPDOs. The SV680N‑
INT provides 7 RPDOs and 6 TPDOs, as listed in the following table.

RPDO
(7)

1600h, 1601h Variable mapping

1701h to 1705h Fixed mapping

TPDO
(6)

1A00h, 1A01h Variable mapping

1B01h to 0x1B04h Fixed mapping

Fixed PDOmapping
SV680N‑INT provides five fixed RPDOs and four fixed TPDOs.

The following table lists the typical instances of RPDOs and TPDOs.

Control Mode PP/CSP

1701h
(Outputs)

Mapping objects (4 mapping objects, 12 bytes)
6040h (Control word)
607Ah (Target position)
60B8h (Touch probe function)
60FEh sub‑index 1 (forced physical outputs)

1B01h
(Inputs)

Mapping objects (9 mapping objects, 28 bytes)
603Fh (error code)
6041h (status word)
6064h (position actual value)
6077h (torque actual value)
60F4h (following error actual value)
60B9h (touch probe status)
60BAh (probe 1 positive edge)
60BCh (probe 2 positive edge)
60FDh (Digital inputs)

Control Mode PP/PV/PT/CSP/CSV/CST

1702h
(Outputs)

Mapping objects (7 mapping objects, 19 bytes)
6040h (Control word)
607Ah (Target position)
60FFh (Target velocity)
6071h (Target torque)
6060h (Modes of operation)
60B8h (Touch probe function)
607Fh (Max. profile velocity)



EtherCAT Communication [N]

‑70‑

1B02h
(Inputs)

Mapping objects (9 mapping objects, 25 bytes)
603Fh (error code)
6041h (status word)
6064h (position actual value)
6077h (torque actual value)
6061h (modes of operation display)
60B9h (touch probe status)
60BAh (probe 1 positive edge)
60BCh (probe 2 positive edge)
60FDh (Digital inputs)

Control Mode PP/PV/CSP/CSV

1703h
(Outputs)

Mapping objects (7 mapping objects, 17 bytes)
6040h (Control word)
607Ah (Target position)
60FFh (Target velocity)
6060h (Modes of operation)
60B8h (Touch probe function)
60E0h (Positive torque limit value)
60E1h (Negative torque limit value)

1B03h
(Inputs)

Mapping objects (10 mapping objects, 29 bytes)
603Fh (error code)
6041h (status word)
6064h (position actual value)
6077h (torque actual value)
60F4 (following error actual value)
6061h (modes of operation display)
60B9h (touch probe status)
60BAh (probe 1 positive edge)
60BCh (probe 2 positive edge)
60FDh (Digital inputs)

Control Mode PP/PV/PT/CSP/CSV/CST

1704h
(Outputs)

Mapping objects (9 mapping objects, 23 bytes)
6040h (Control word)
607Ah (Target position)
60FFh (Target velocity)
6071h (Target torque)
6060h (Modes of operation)
60B8h (Touch probe function)
607Fh (Max. profile velocity)
60E0h (Positive torque limit value)
60E1h (Negative torque limit value)



EtherCAT Communication [N]

‑71‑

Control Mode PP/PV/CSP/CSV

1705h
(Outputs)

Mapping objects (8 mapping objects, 19 bytes)
6040h (Control word)
607Ah (Target position)
60FFh (Target velocity)
6060h (Modes of operation)
60B8h (Touch probe function)
60E0h (Positive torque limit value)
60E1h (Negative torque limit value)
60B2h (Torque offset)

Variable PDOmapping
SV680N‑INT provides two variable RPDOs and two variable TPDOs.

Variable
PDO

Index
Max. Length
of the Byte

Default Mapping Object

RPDO1 1600h
1601h 40

6040h (Control word)
607Ah (Target position)
60B8h (Touch probe function)

TPDO1 1A00h
1A01h 40

603Fh (error code)
6041h (status word)
6064h (position actual value)
60BCh (probe 2 positive edge)
60B9h (touch probe status)
60BAh (probe 1 positive edge)
60FDh (Digital inputs)

Sync Manager PDO assignment
The process data can contain multiple PDO mapping data objects during cyclic
EtherCAT data communication. The CoE protocol defines the PDO mapping object list
of the Sync Manager using data objects 1C10 to 1C2Fh. Multiple PDOs can be mapped
to different sub‑indexes. The SV680N‑INT series servo drive supports assignment of
one RPDO and one TPDO, as described in the following table.

Index Sub‑index Description

1C12h 01h One of 1600h, 1601h and 1701h to 1705h used as the actual
RPDO.

1C13h 01h One of 1A00h, 1A01h and 1B01h to 1B04h used as the actual
TPDO.

PDO configuration
PDO mapping parameters contain indicators of the process data for PDOs, including
the index, subindex and mapping object length. The sub‑index 0 indicates the number
(N) of mapping objects in the PDO, and the maximum length of each PDO is 4 x N



EtherCAT Communication [N]

‑72‑

bytes. One or multiple objects can be mapped simultaneously. Sub‑indexes 1 to N
indicate the mapping content. Table 3‑27 defines mapping parameters.

Places 31 ... 16 15 ... 8 7 ... 0
Descrip
tion Index Sub‑index Object Length

The index and sub‑index together define the position of an object in the object
dictionary. The object length indicates the bit length of the object in hexadecimal, as
shown below.

Object Length Bit Length
08h 8‑bit
10h 16‑bit
20h 32‑bit

For example, the mapping parameter of the 16‑bit control word 6040.00h is
60400010h.

● PDO mapping steps:
Abide by the following procedures for PDO mapping:

1. Configure the mapping group of PDO. Write 0 to sub‑index 00h of 1C12h (or
1C13h).

a. Clear the original mapping group. Write 0 to sub‑index 00h of 1C12h ( or
1C13h) to clear the original mapping group.

b. Write the PDO mapping group. Write the mapping group according to
application needs. Pre‑write values of 1600h/1701h...1705h to 1C12h and
values of 1A00h/1B01h...1B04h to 1C13h. Note: Only 1600h and 1A00h, and
1601h and 1A01h are are configurable mapping groups.

c. Write the total number of this PDO mapping group to sub‑index 0 of 1C12h (or
1C13h).

2. Configure the mapping objects of PDO. Write 0 to sub‑index 00h of 1600h (or
1A00h) and 1601h(or 1A01h).

a. Clear the original mapping objects. Write 0 to sub‑index 00h of 1600h (or
1A00h), and 1601h (or 1A01h) to clear the original mapping objects.

b. Write the PDO mapping content. Write the mapping content to sub‑index
1...10 of the mapping parameter based on object parameter definitions in
XML file. Only mappable objects can be configured as PDO mapping content.

c. Write the total number of mapping objects. Write the number of mapping
objects in step b to sub‑index 0.



EtherCAT Communication [N]

‑73‑

Note
● Configure the PDO only when the EtherCAT state machine is in pre‑operational

state ("2" displayed on the keypad). Otherwise, an error will be reported.
● Do not save the PDO configuration parameters to EEPROM. Configure the mapping

objects again each time upon power‑on. Otherwise, the mapping objects are the
default parameters of the servo drive.

An SDO fault code will be returned when the following operations are under
execution:

● Modify PDO parameters in status other than pre‑operational.
● Write a value outside the range of 1600h/1601h/1701h...1705h to 1C12h. Write a

value outside the range of 1A00h/ 1A01h/1B01h...1B04h to 1C13h.

4.4.2 Service Data Object (SDO)

The EtherCAT SDO is used to transfer non‑cyclic data, such as communication
parameter configuration and servo drive parameter configuration. The CoE service
types of EtherCAT include:

● Emergency message
● SDO request:
● SDO response:
● TxPDO
● RxPDO
● Remote TxPDO transmission request
● Remote RxPDO transmission request
● SDO information.

The SV680N‑INT series supports SDO request and SDO response.

4.5 Communication Parameters

Parameter address structure
Parameter access address: index+subindex, both of which are in hexadecimal.

CiA402 establishes the following restrictions on the parameter address:

Index (Hex) Description

0000h to 0FFFh Data type

1000h to 1FFFh CoE communication object

2000h to 5FFFh Manufacturer‑specific object

6000h to 9FFFh Profile object
A000h–FFFFh Reserved



EtherCAT Communication [N]

‑74‑

System parameter setting
Set related parameters to allow the SV680N‑INT servo drive to be connected to the
EtherCAT fieldbus network.

☆ Related parameters:

Parameter
Communica

tion
Address

Name Value Default Unit
Change
Mode

H02.00 2002‑01h Control mode 0: Velocity mode
1: Position mode
2: Torque mode
7: Technology segment
9: EtherCAT mode

9 ‑ At stop

H0E.01 200E‑02h Save objects
written through
communication to
e2prom

0: Not save
1: Save parameters written through
communication to e2prom
2: Save object dictionaries written
through communication to e2prom
3: Save parameters and object
dictionaries written through
communication to e2prom
4: Save object dictionaries written
before communication (OP) to
e2prom

4 ‑ Real‑time

H0E.21 200E‑16h EtherCAT slave
alias

0 to 65535 0 ‑ At stop

Note
Before saving parameters to EEPROM, set H0E.01h to a proper value. Otherwise, parameters
will be restored to default values at next power‑on. It is recommended to set H0E.01 to 0
after parameters are set properly. This is to prevent damage to the EEPROM device caused
by prolonged writing process.



Communication Configuration Instance

‑75‑

5 Communication Configuration Instance

5.1 Modbus Communication Configuration Case [P]

5.1.1 Communication Overview

The following describes the Modbus RTU communication connection between
Inovance H2U and the SV680P‑INT series servo drive. It can be achieved by a
configuration table or program. In this case, H06.03 (Write speed) and H0b.00 (Read
speed) are used for illustration.

Figure 5‑1 Schematic and wiring

5.1.2 Wiring of Modbus RTU Communication Between SV680P-INT and
Third-Party PLCs

Inovance H2U and SV680P-INT
Name Model Quantity Remarks

PLC H2U‑1616MT/MR 1 piece ‑
Inovance SV680P‑
INT series servo
drive and applicable
motor

SV680PT012I‑INT
MS1H3‑******* 1 set ‑

COM1 Terminal Layout on PLC Side CN3/CN4 Terminal Layout on Drive Side
Signal Name Pin No. Signal Name Pin No.

RS485+ 1 RS485+ 4
RS485‑ 2 RS485‑ 5

‑ ‑ PE (shield layer) Enclosure



Communication Configuration Instance

‑76‑

Siemens PLC and SV680P-INT
Siemens S7200 PLC CN3/CN4 Terminal Layout on Drive Side

PLC PORT0‑RS485 Pin No. Signal Name Pin No.
Data+ 3 RS485+ 4
Data‑ 8 RS485‑ 5

PE (shield layer) Enclosure PE (shield layer) Enclosure

Mitsubishi FX3U and SV680P-INT
Mitsubishi FX3U PLC CN3/CN4 Terminal Layout on Drive Side

FX3U‑485‑BD Pin No. Signal Name Pin No.
SDA

Short RS485+ 4
RDA
SDB

Short RS485‑ 5
RDB
SG Enclosure PE (shield layer) Enclosure

Setting communication parameters through GX PLC software (initialization of
communication port 1):

1. Communication port 1 parameter setting (RS485, 19200, 7, N, 1)
2. LD M8002
3. Initial ON
4. MOV H0C91 D8120
5. Communication port 1 setting
6. SET M8161
7. Communication format: 8‑bit

Using two major commands (See the user guide for FX3U communication.)

● RS D100 K8 D120 K8

■ D100: station No. being "?"
■ D120: starting address for data receiving (8 bytes)

● CRC D100 D106 K6

■ D100: station No. being "?"
■ D106: CRC checked address

Omron PLC and SV680P-INT
Omron CP1L CN3/CN4 Terminal Layout on Drive Side

PLC PORT0‑RS485 Pin No. Signal Name Pin No.
SDB+ ‑ RS485+ 4
SDA‑ ‑ RS485‑ 5

PE (shield layer) Enclosure PE (shield layer) Enclosure



Communication Configuration Instance

‑77‑

Note
Set 2, 3, 5, and 6 on the DIP switch to ON, and others to OFF. The DIP switch is on the back
of PLC communication card.

5.1.3 Servo Parameter Settings

Para. Setting Description Remarks
H0E.00 1 Drive axis address ‑
H0E.80 5 Modbus baud rate 5: 9600 bps

H0E.84 1
Modbus communication
data sequence

0: High 16 bits before low 16
bits
1: Low 16 bits before high
16 bits

5.1.4 PLC Program Examples

Communication connection implemented through programming



Communication Configuration Instance

‑78‑

Communication connection implemented through configuration table

5.2 CANopen Communication Configuration Case [P]

5.2.1 Connecting SV680P-INT to Schneider 3S Master

The following takes the position control mode as example. For details on the position
control mode, see section "Position Control Mode" in SV680‑INT Series Servo Drive
Function Guide.

In the position control mode, assignment of objects used as PDO are listed in the
following table.



Communication Configuration Instance

‑79‑

Table 5–1 PDO mapping allocation

PDO Object Description Bit Length

RPDO1
6040.00h Control word Uint16
6060.00h Mode selection Int8

RPDO2
6081.00h Profile velocity Uint32
607A.00h Target position Int32

TPDO1
6041.00h Status word Uint16

6061.00h
Operation mode

display Int8

TPDO2
606C.00h Speed feedback Int32
6064.00h Position actual value Int32

TPDO3 H0b.26 Phase current
feedback Uint16

SDO is used to write acceleration 6083h, deceleration 6084h and emergency stop
605Ah.

SoMachine is the software tool of Schneider 3S series master. This section describes
how to connect the SV680P‑INT servo drive to Schneider M238.

1. Start SoMachine and click Create newmachine based on a standard project.
Select a master device, for example, TM238LFDC24DT, modify the device name, and
click Create Project, as shown below.

2. Enter the file name and click Save in the dialog box displayed.



Communication Configuration Instance

‑80‑

3. The following interface appears.

4. Choose Tools > Device Repository in the toolbar. The Device Repository dialog
box is displayed. (If the EDS file is imported, steps Step 4 to 6 can be omitted.)



Communication Configuration Instance

‑81‑

5. As shown in the preceding interface, select System Repository and click Install.
Select a directory for saving the EDS file, as shown below.

6. Click Open. The EDS file of the SV680P‑INT servo drive is imported into SoMachine.
In the Device Repository dialog box, you can choose Field Bus > CANopen >
Remote Device to view devices..



Communication Configuration Instance

‑82‑

7. Close the preceding dialog box and click Configuration. In the interface displayed,
only M238 master is available. Click CAN on the master station.

8. The Add device dialog box is displayed. Add a CANopen gateway, select Schneider
Electric for Supplier, select CANopen Optimized, click the Add and close.



Communication Configuration Instance

‑83‑

9. Now, the CANopen gateway appears in the interface. Click the position indicated by
2.

10. The Add device dialog box appears again. Select Inovance as the vendor and
SV680 as the device, and then click Add and close.



Communication Configuration Instance

‑84‑

11. Now, the SV680P‑INT servo drive appears in the interface.

12. Click Program and double‑click CAN on the left to select a proper baud rate. 500
Kbps is selected here.



Communication Configuration Instance

‑85‑

13. Double‑click SV680P_INT_Servo_Driver on the left. The node ID can be modified.
Check Enable Expert Settings.

14. Click PDO Mapping and check two RPDO and three TPDO.



Communication Configuration Instance

‑86‑

15. Double‑click RPDO1. The PDO Properties dialog box is displayed. Modify
Transmission Type to Type 255. Perform the same operation for other PDOs.

16. Select Receive PDO Mapping and click receive PDO parameter. Click Add
Mapping or select a mapping and click Edit.



Communication Configuration Instance

‑87‑

17. Select the proper mapping object in the dialog box displayed according to "Table
5–1 " on page 79.

18. After the mapping object is added, the RPDO mapping is shown as follows.



Communication Configuration Instance

‑88‑

19. Similarly, click Send PDO Mapping and perform configuration according to "Table
5–1 " on page 79, as shown below.

20. Click the Service Data Object and click New to add a required SDO. (Optional) (If
default values are used, steps 20 to 22 can be omitted)



Communication Configuration Instance

‑89‑

21. Select the corresponding SDO in the list. You can modify the value and click OK.
(Optional)

22. The newly added SDO is shown as below. (Optional)



Communication Configuration Instance

‑90‑

23. Double‑click POU on the left. Add variable definitions in 2 and add PLC program
logic in 3. Click Edit or press “F11”. If no error occurs, go to the next step.

24. Double‑click MAST to add the PDO, and set the program circulation interval.



Communication Configuration Instance

‑91‑

25. Select the POU added based on the following dialog box and click OK.



Communication Configuration Instance

‑92‑

26. Select CANopen I/O Mapping under SV680P_INT... and double‑click the variable
to display the ... button, and then click the ... button.

27. Select the PLC‑defined variable based on the following steps.



Communication Configuration Instance

‑93‑

28. Add other variables in the similar way, and the mapping is shown below.



Communication Configuration Instance

‑94‑

29. Double‑click the master name on the left. Select MyController and click Set
active path on the right.

30. The following warning displays. Press Alt+F according to the instructions.



Communication Configuration Instance

‑95‑

31. Click the icon circled out or select Online > Login or press Alt+F8.

32. Click Yes in the dialog box displayed.

33. After download is done, click the ▶ circled out or click Online > Start or press F5
to start the PLC program written by the user. The motor operates in the mode
defined by the user.



Communication Configuration Instance

‑96‑

34. You can also perform motor commissioning manually according to the following
steps.
Select CANopen I/O Mapping under SV680P_INT... and enter the value needed in
the Prepared V... column. Next, click Debug/Watch > Forced Value or press F7 to
modify the variable manually.

35. Write 1 to 6060h, 100 to 6081h, and 10485760 (10 revolutions) to 607Ah. Write 6
(0x06), 7 (0x07), 47 (0x2f), and 63 (0x3f) to 6040h in sequence to make the motor
run.



Communication Configuration Instance

‑97‑

Note
● When writing multiple values for one variable, execute the "Forced value"

command every time a value is written. When writing values for multiple variables,
you can execute the "Forced value" command once for all after all the values are
written.

● When a new position or speed reference is required, write the new reference and
set 6040h to 47(0x2f) and 63(0x3f) in turn. The motor runs to the position
according to the new reference regardless of whether the previous reference is
executed.

● To stop the motor, set 6040h to 0.
● To terminate manual writing of values, go to the toolbar and choose Debug/Watch

> Release Values, or press Alt+F7. Then, variables will be executed according to the
PLC program logic instead of manually written values.

36. Execute 1 marked in the following figure, or select Online > Stop in the toolbar or
press Shift + F8 to stop the PLC program. Click 2 marked in the following figure, or
select Online > Exit or press Ctrl + F8 to exit from the online function.

5.2.2 Connecting SV680P-INT to Beckoff CANopen Master

Assign PDO according to "Table 5–2 " on page 98 in the position control mode.

1. Configuring PDO mapping is complex on a Beckoff master node. Therefore, before
connecting the network, manually configure the PDO mapping. Based on the



Communication Configuration Instance

‑98‑

following table and the appendix, change the mapping by modifying parameters.
The parameters to be modified are as follows:

Table 5–2 Example of PDO mapping of Beckhoff master

Parameter Object Mapping Object Input
H2d.32 1600.00h Number of mapped objects

in RPDO1
2

H2d.33 1600.01h 6040.00h 60400010h
H2d.35 1600.02h 6060.00h 60600008h
H2d.49 1601.00h Number of mapped objects

in RPDO2
2

H2d.50 1601.01h 6081.00h 60810020h
H2d.52 1601.02h 607A.00h 607A0020h
H2E.20 1A00.00h Number of mapped objects

in TPDO1
2

H2E.21 1A00.01h 6041.00h 60410010h
H2E.23 1A00.02h 6061.00h 60610008h
H2E.37 1A01.00h Number of mapped objects

in TPDO2
2

H2E.38 1A01.01h 606C.00h 606C0020h
H2E.40 1A01.02h 6064.00h 60640020h
H2E.54 1A02.00h Number of mapped objects

in TPDO3
1

H2E.55 1A02.01h 200B.19h 200B1910h
H2E.57 1A02.02h ‑ 0

2. Connect Beckoff CX9020, as a master node, to the CANopen module of EL6751 and
perform the test. Ensure that the IP address of CX9020 is in the same network
segment as the IP address of the PC and the first four bytes of AMS Net (Properties
> AMS Router > AMS Net) of Beckoff TwinCAT software are the same as the IP
address of the PC.



Communication Configuration Instance

‑99‑

3. Open TwinCAT System Manager and create an empty project. Click SYSTEM ‑
Configuration on the left and click Choose Target... on the right.



Communication Configuration Instance

‑100‑

4. In the dialog box that is displayed, select…local… and click Search (Ethernet).

5. Select the IP Address as indicated by 1 and click Broadcast Search.

6. The master is displayed. Select the master and click Add Route.



Communication Configuration Instance

‑101‑

7. In the dialog box displayed, the account is the same with the Host Name and the
password is empty. Click OK.

8. Click Close in the interface shown in Step 6, then you can click + in the Choose
Target System dialog box to select the master. Finally, click OK.



Communication Configuration Instance

‑102‑

9. The master (in red background) can be seen in the lower right corner of the
window, which is in the configuration status (in blue background). If the master is
in the operating status (in green background), click the icon indicated by 4 to
switch to the configuration status, and then proceed to the next step.
Select I/O Devices on the left and click the icon indicated by 3 or right‑click I/O
Devices and select Scan Devices.

10. Click OK in the warning dialog box displayed.



Communication Configuration Instance

‑103‑

11. Check Device EtherCAT and click OK in the dialog box displayed.

12. Click Yes in the dialog box asking whether to scan for boxes.

13. Click Yes in the dialog box asking whether to create 6751 master.

14. Select the baud rate (defaulted to 500 kbps) and click OK. The master starts
device searching, which may take a while.



Communication Configuration Instance

‑104‑

15. After device searching is done, click OK in the warning dialog box displayed.

16. Click Yes in the dialog box asking whether to activate free run.

17. The Box of SV680P‑INT series servo drive is now displayed on the left. Right‑click
to insert three TPDOs and 2 RPDOs. Right click Disabled to uncheck it.



Communication Configuration Instance

‑105‑

Note
Only servo drives equipped with termination resistors can be scanned by the master.

18. The following figure shows the result after the previous operation is complete.
Choose TPDO1 > Inputs, right‑click, and choose Insert Variable.

19. Map different variables in each PDO according to "Table 5–2 Example of PDO
mapping of Beckhoff master" on page 98. TPDO1 maps 6041.00h and 6061.00h. To
insert the first variable 6041h, select UINT16 in the Variable Type first, and then
enter a proper name in the field Name and click OK.



Communication Configuration Instance

‑106‑

20. Now 6041h has been added to TPDO1. Select Inputs again, right‑click, choose
Insert Variable, and insert the second variable.

21. For the inserted variable 6061h, select INT8 (the object dictionary can be queried)
for Variable Type, enter a large value for Byte of Start Address to prevent 6061h
from being inserted in front of 6041h, enter a proper name, Click OK.



Communication Configuration Instance

‑107‑

22. You can see that two objects are added to TPDO1. Note that the sequence of the
two variables must be the same as that in "Table 5–2 Example of PDO mapping of
Beckhoff master" on page 98. Otherwise, the second variable must be deleted and
inserted again and a large value must be entered in 2 marked in the figure in Step
21.
After making sure that the variable sequence is correct, choose TPDO1 > Inputs,
right‑click, and choose Recalc Address to allocate addresses. This step must be
performed. Otherwise, addresses will be in mess.



Communication Configuration Instance

‑108‑

23. Repeat steps 18 to 22 for other PDOs. Add corresponding mapping variables
according to "Table 5–2 Example of PDO mapping of Beckhoff master" on page 98.
The interface after variables are added is shown below.

24. Click the icon circled out in the following figure or press Shift + F4.



Communication Configuration Instance

‑109‑

25. Click Yes in the following dialog box.

26. Click Yes in the dialog box asking whether to activate free run.

27. Select the Box of SV680P‑INT and select Inputs > NodeState. The node state in
Online is 0, indicating the node is in a normal state.



Communication Configuration Instance

‑110‑

28. Open TwinCAT PLC Control, create a new project and select CX (ARM) in the
dialog box displayed.

29. In the dialog box that is displayed, select the following options:



Communication Configuration Instance

‑111‑

30. Enter corresponding variable definition and the PLC logic.

31. In the toolbar, select Online > Choose Run-Time System. Select the
corresponding master port in the dialog box displayed and click OK.



Communication Configuration Instance

‑112‑

32. In TwinCAT System Manager, select PLC →→ Configuration on the left, and then
right‑click to display the short‑cut menu. Select Append PLC Project... in the
short‑cut menu to select the PLC program (.tpy). created.

33. After the PLC program is added, select the PDO variable and click Linked to or
double‑click the variable to link the variable to the PLC program.



Communication Configuration Instance

‑113‑

34. Select the corresponding PLC variable and click OK.

35. After the variable is linked, a small arrow pointing upper right appears at the
bottom left of the variable name icon. As shown in the following figure, the name of



Communication Configuration Instance

‑114‑

the variable not linked is displayed on the left and the name of the linked variable
is displayed on the right.

36. Click Generate mapping, Check Configuration, and Activate Configuration in
sequence, as circled out by 1, 2, and 3 in the following figure.

37. Click OK to activate configuration.

38. Click OK to restart TwinCAT system with the run mode.



Communication Configuration Instance

‑115‑

39. Open the project created by TwinCAT PLC Control software before, and click
Online > Login or press F11 to display the dialog box asking whether to download
the new program.

40. Select Online > Run or press F5 to run the user PLC program.



Communication Configuration Instance

‑116‑

41. You can perform write commissioning forcibly through the manual mode. The
commissioning method is similar to that of the Schneider master.
Double‑click variables circled out in the following figure and enter values.



Communication Configuration Instance

‑117‑

42. Enter the value and click OK.

The value entered is displayed in the square brackets behind the original variable.
Click Online → Forced Value or press F7 to write the value forcibly.

Write 1 to 6060h, 100 to 6081h, and 10485760 (10 revolutions) to 607Ah. Write 6
(0x06), 7 (0x07), 47 (0x2f), and 63 (0x3f) to 6040h in sequence to make the motor
run.

Note
● When writing multiple values for one variable, execute the "Forced value"

command every time a value is written. When writing values for multiple variables,
you can execute the "Forced value" command once for all after all the values are
written.

● When a new position or speed reference is required, write the new reference and
set 6040h to 47(0x2f) and 63(0x3f) in turn. The motor runs to the position
according to the new reference regardless of whether the previous reference is
executed.

● To stop the motor, set 6040h to 0.
● To terminate manual writing of values, go to the toolbar and choose Online >

Release Force, or press Shift+F7. Then, variables will be executed according to the
PLC program logic instead of manually written values.

43. In the toolbar, choose Online > Stop to stop executing the PLC program. Choose
Online > Logout to continue editing the PLC program or exit.

5.2.3 Connecting SV680P-INT to Inovance H3U CANopen Master

1. Open AutoShop, double‑click "CAN" in Communication Port of the project
management interface or right‑click "Open" to pop up the "CAN Config" window.
Select the CANopen master as the protocol and set Station No. and Baud Rate of
the master.



Communication Configuration Instance

‑118‑

2. Right‑click CAN (CANopen) and select Add CAN Config in the short‑cut menu.

3. Double click CANopen Config.
You can see the H3U master icon in the CANopen configuration interface. Double‑
click this icon to open the master configuration interface, in which you can set
parameters such as synchronization and heartbeat.



Communication Configuration Instance

‑119‑

H3U axis‑control commands control the servo drive through PDO communication.
The PDO adopts synchronization mode by default when the drive is working with
an H3U master. Therefore, you need to check Enable Synchronous Production in
this interface and set the synchronization period (15ms for 8 axes generally) as
needed. For other servo drive models, this option also needs to be checked if the
PDO also adopts synchronization mode.

4. If the EDS files needed is not in the CANopen device list, add the device EDS file.

a. Click CANopen device list and right‑click on it to display the short‑cut menu. In
the short‑cut menu, select Import EDS.



Communication Configuration Instance

‑120‑

b. In the dialog box displayed, select the EDS file needed and click Open.

c. The device added will be displayed in the CANopen device list on the right.



Communication Configuration Instance

‑121‑

5. Double‑click the SV680P in the CANopen device list to add CANopen slaves. Then,
double‑click the SV680P-INT icon in the configuration to open the slave
configuration parameter list.

6. The axis parameters setting interface is shown as follows, which include axis
parameter setting and homing parameter setting.
Setting axis parameters



Communication Configuration Instance

‑122‑

● For devices without reducers, set the gear ratio to 1:1. Set the pulses per motor
revolution and distance per motor revolution correctly. The calculation formula
is as follows.

● Applications with reducers are shown as follows.



Communication Configuration Instance

‑123‑

The calculation formula for devices with reducers is as follows.

Setting axis homing parameters

The range of the homing method is 1 to 35. The calculation formula for parameters
and object dictionaries of the homing speed, homing acceleration, and homing
proximity speed is shown as follows.

The relation between preceding parameters and object dictionaries is as follows.

Index Sub‑index Data type Description Unit
6098h 00 SINT Homing method ‑

6099h 01 UDINT Speed during
search for switch

Reference unit/s



Communication Configuration Instance

‑124‑

Index Sub‑index Data type Description Unit
6099h 02 UDINT Speed during

search for zero
Reference unit/s

609Ah 00 UDINT Homing
acceleration

Reference unit/s2

60E6h 00 USINT Homing method ‑

7. The object dictionaries involved in CANopen CiA402 motion control commands
interact with the slave in the PDO mode. These object dictionaries, which include
6040h (Control word), 6041h (Status word), 6060h (Modes of operation), 6061h
(Modes of operation display), 6081h (Profile velocity), 607Ah (Target position),
60FFh (Target velocity), 6064h (Position actual value), and 606Ch Velocity actual
value), must be configured as required below. Otherwise, axis configuration failure
may occur during calling axis control commands.

Note
It is recommended to configure the PDO communication to synchronous mode to prevent
frame loss caused by interference during communication. The synchronous mode requires
synchronous production to be enabled in the master configuration. To ensure communica‑
tion stability, the network load rate must be lower than 70%.

Configuring the RPDOs



Communication Configuration Instance

‑125‑

Configure the RPDOs in the following sequence.

Index Sub‑index Name
6040h 00 Control word
60FFh[1] 00 Target velocity

6060h 00 Modes of operation

607Ah 00 Target position

6081h 00 Profile velocity

Note
[1]: The object dictionary can be replaced by other object dictionaries with a length of 0x20.

It is recommended to use synchronous mode for PDO communication. The method
for setting synchronous PDO communication of the slave is as follows.



Communication Configuration Instance

‑126‑

Note
When MCMOVVEL and MCJOG are not in use, this object dictionary can be replaced by other
object dictionaries with a length of 0x20.

Steps:

● 1. Double‑click the group No. and a dialog box appears.
● 2. Set "Transmission Type" to "Type1‑240".
● 3. Set "Synchronization NO." to "1".

Configuring TPDOs:

Configure the TPDOs in the following sequence.

Index Sub‑index Name
6041h 00 Status word

60FDh[1] 00 Digital inputs

6061h 00 Modes of operation
6064h 00 Position actual value
606Ch 00 Velocity actual value



Communication Configuration Instance

‑127‑

Note
[1]: The object dictionary can be replaced by other object dictionaries with a length of 0x20.

The mode for setting TPDOs is similar to that for RPDOs.

The EDS must be configured based on the preceding sequence by default. Observe the pre‑
ceding configuration sequence when adding new objects. A wrong sequence will cause fail‑
ure of H3U axis control commands. The preceding configuration sequence does not
necessarily apply to PLCs from other manufacturers.

8. Download the CANopen configuration to H3U. The H3U starts slave configuration
based on the previous configurations. Configuration is performed based on the
object dictionaries listed in the Servo Data Object interface. To view this list, check
Enable Expert setting in the Slave Node interface first.



Communication Configuration Instance

‑128‑

During commissioning, you can monitor the device status online and read/write the
object dictionary of the slave through H3U, as shown below.

Where:

● 1. Click Start Monitor.
● 2. Write the index of the object dictionary to be operated in Index and the sub‑

index in Subindex.
● 3. Click Read SDO or Write SDO as needed.

5.2.4 Connecting SV680P-INT to Inovance EASY CANopen Master

1. Open Autoshop and click New Project. In the popup dialog box, first select the
editor type, and then select Easy300 as the PLC type. Enter the project name and
select the save path, and then click "OK" to create a new project and enter the
project main interface.



Communication Configuration Instance

‑129‑

2. Select GE20-CAN-485 on the right side of the navigation tree of Configure EXP-A in
the Project Management window. Or select Auto Scan in the navigation tree of
Module Configuration to add an GE20‑CAN‑485 expansion card, as shown in the
following figure. The GE20‑CAN‑485 expansion card only supports EXP‑A.



Communication Configuration Instance

‑130‑

3. Double‑click CAN in Configuration of Project Management, select CANopen in the
pop‑up window, set the station number and baud rate, and click OK. At this time,
CAN is configured as a CANopen slave station,. Configure it as a CANopen master
station by right‑clicking CAN in Configuration of Project Management and
selecting Add CAN Configuration in the pop‑up menu, as shown in the following
figure.



Communication Configuration Instance

‑131‑

4. Double click CANopen Config to open the CANopen Configuration interface, as
shown below:

5. If the EDS files needed is not in the CANopen device list, add the device EDS
needed. Click CANopen device list and right‑click on it to display the short‑cut
menu. In the short‑cut menu, select Import EDS. In the dialog box displayed, select
the EDS device file needed and click Open. The device added will be displayed in
the CANopen device list on the right.



Communication Configuration Instance

‑132‑

6. Double‑click the EASY master station to open the master configuration interface, in
which you can set parameters such as synchronization and heartbeat.



Communication Configuration Instance

‑133‑

7. Double‑click the SV680P_INT in the CANopen device list to add CANopen slaves.
Then, double‑click the SV680P_INT icon in the configuration to open the slave
configuration parameter list.

8. The axis parameters setting interface is shown as follows, which include axis
parameter setting and homing parameter setting.



Communication Configuration Instance

‑134‑

● Setting axis parameters
For devices without reducers, set the gear ratio to 1:1. Set the pulses per motor
revolution and distance per motor revolution correctly. The calculation formula
is as follows.

Applications with reducers are shown as follows.



Communication Configuration Instance

‑135‑

The calculation formula is as follows.

● Homing
The range of homing modes is 1‑35. For details of each mode, see SV680P‑INT
Series Servo Drive Function Guide.



Communication Configuration Instance

‑136‑

9. Click Receive PDO or Transmit PDO. The following interface is displayed.

Receive PDO Parameter: Indicates the data sent by the master station to a slave
station.

Send PDO Parameter: Indicates the data sent by a slave station to the master
station.

You can check the box in front of the number to enable a PDO. The PDOs in the EDS
file that take effect by default are already checked. You can click Add PDO
mapping, Edit, or Delete to edit PDO mapping.

10. Download the CANopen configuration to EASY. The EASY starts slave configuration
based on the previous configurations. Configuration is performed based on the
service object list. To view this list, check Enable Expert setting in the Slave Node
interface first.



Communication Configuration Instance

‑137‑

During commissioning, you can monitor the device status online and read/write the
object dictionary of the slave through EASY, as shown below.



Communication Configuration Instance

‑138‑

5.3 EtherCAT Communication Configuration Case [N]

5.3.1 SV680N-INT and AM600 Controller

This section describes how to configure the SV680N‑INT series servo drive for
cooperation with the AM600 series controller.

Figure 5‑2 Configuration flowchart

Open the software and create an AM600 project.
Select AM600-CPU1608TP, as shown in the following interface.



Communication Configuration Instance

‑139‑

Adding the SV680N-INT servo drive as slave
Open the network configuration and import the ECT file of SV680N‑INT. Add an
SV680N‑INT as a slave, as shown in the following interface.



Communication Configuration Instance

‑140‑

Configuring PDO
Select Enable Expert Settings and configure PDOs in the process data as needed. In
this case, CSP is used as the operation mode and the default values of 1600 and 1A00
are used for PDO parameters.



Communication Configuration Instance

‑141‑

Configuring axis parameters
1. Set the software position limit and the operation mode in basic axis settings.

2. Select 16#4000000 for the 26‑bit encoder, 16#800000 for the 23‑bit encoder and
16#100000 for the 20‑bit encoder during unit conversion. In this case, the single‑
turn travel distance is set to 60 mm and 1 mm/s equals to 1 RPM of the motor.

3. Select the homing mode according to actual needs. For details, see section
"Homing Mode" in SV680‑INT Series Servo Drive Function Guide for details.



Communication Configuration Instance

‑142‑

Adding a program
Add a program to control the servo axis position, as shown by the following interface.
See the following figure.



Communication Configuration Instance

‑143‑

● Implement basic functions such as enabling, homing and positioning through
adding function blocks.



Communication Configuration Instance

‑144‑

● To implement directed motion through the logic program, some variables may
need to be called to different POUs. Therefore, set the variables as global
variables.



Communication Configuration Instance

‑145‑

Compiling
After compiling the program, click the icon indicated by the red square box to check
whether the program is correct.

Downloading and commissioning
1. After checking that the program is correct, download the program to PLC. The

program can be activated after running. Before downloading, scan the PLCs first to
select the PLC to be downloaded, and then click the download icon, as shown in
the following interface.

2. After log‑in, ensure the servo drive and the axis are in normal state.



Communication Configuration Instance

‑146‑

3. Monitor critical parameters through the monitoring function. Start the testing
program to perform basic tests such as enabling, homing and positioning.



Communication Configuration Instance

‑147‑

4. After the testing is done, perform directed running program.

5.3.2 SV680N-INT and Omron Controller

This section describes how to configure the SV680N‑INT series servo drive for working
with an Omron NX701 controller.



Communication Configuration Instance

‑148‑

Figure 5‑3 Configuration flowchart

Note
When more than 25 drives are networked with Omron NX701, you need to modify the cable
length defined in the Omron master station. The cable length is calculated based on the
fact that one drive needs a length of 36 m.

Installing the Sysmac Studio software
Install the Sysmac Studio software.

It is recommended to install V1.10 or above.

Importing the xml device description file
Importing the device description file (V2.5 or later recommended).



Communication Configuration Instance

‑149‑

It is recommended to import the device description file of "SV680_INT_EOE_1Axis_
02002_240110.xml" or later version. The file path is as follows: OMRON\Sysmac Studio
\IODeviceProfiles\EsiFiles\UserEsiFiles.

If the xml file is saved under this path for the first time, the Sysmac Studio software
must be restarted.

Setting the network connection attribute
● If the PC is connected to the controller through an USB, skip this step.
● If the PC is connected to the controller through Ethernet, set the TCP/IP attribute

of the PC, as shown below.

Configuring the servo drive
Recommended version:



Communication Configuration Instance

‑150‑

Use MCU software version (H01.00) of 0900.1 or later for SV680N‑INT series servo
drives.

Use FPGA software version (H01.01) of 0902.1 or later for SV680N‑INT series servo
drives.

Pay attention to the setting of H0E.21.

Parame
ter

Name
Value
range Unit

Initial
Value

Mode
Setting
Condi
tion

Effective
Time

Value

H0E.21 EtherCAT
slave alias 0‑65535 ‑ 0 ‑

Stop
setting At once Non‑

zero
When an Omron controller is used, set the EtherCAT communication station number in
H0E.21. It is recommended to set the station number according to the actual connection
sequence for the convenience of configuration management.

Create a project.
Device: Set a device according to the actual controller model.

Version: Use V1.09 or later versions. For NX1P2‑1140DT, only V1.13 is supported.



Communication Configuration Instance

‑151‑

Communication setting
After entering the main interface, set the connection mode between the PC and the
controller in Controller → Connection type.

● Select Remote connection via USB to perform USB Communication Test directly. If
the test is succeeded, proceed to the next step.

● Select Ethernet connection via a hub, in this case, set the IP address to
192.168.250.1 (controlled by NX), and then perform Ethernet Communication Test.
If the test is succeeded, proceed to the next step.



Communication Configuration Instance

-152-

Scanning the device
Switch the controller to the online and running mode.

1. Check that the controller status in the lower right corner is online and running.

2. A prompt window appears if it is a new controller.

3. Click Yes in the window. The name shown in the window is the project name.
Scan the device and add the slave station.

Right click Configurations and Setup→EtherCAT→Master, and select Compare and
Merge with Actual Network Configuration. The controller scans all the slaves in the
network (an error will be reported if the station number is 0). After scanning, click
Apply actual network configuration in the pop-up window to add the slave. You can
view the added slave station in the main page.



Communication Configuration Instance

‑153‑

Parameter settings
Switch the controller to the offline mode and set PDO mapping, axis parameters, and
distributed clock.



Communication Configuration Instance

‑154‑

Setting PDO mapping

1. Setting the PDO mapping.

2. Select the editable RPDO and TPDO provided by the drive for configuration.

3. Modify the PDO mapping object through Add PDO Entry and Delete PDO Entry. The
frequently used mapping parameters are shown in the following interface.



Communication Configuration Instance

‑155‑

Setting axis parameters

1. Right click Motion Control Setup→Axis settings →Add→Motion Control Axis, as
shown in the following interface.

2. MC_Axis000 can be renamed through a simple click. For example, if it is named as
"Rewind axis", the axis variable "Rewind axis" used in the NX program represents
control on this SV680N‑INT servo axis.

3. Double‑click MC_Axis000 and configure an SV680N‑INT device at the
corresponding station in a corresponding Axis Basic Settings interface.

a. Axis assignment



Communication Configuration Instance

‑156‑

● Axis number: Represents the Ethernet communication station No. of the servo
drive, which is also the value of H0E.21.

● Axis use: Represents the axis in use.
● Axis type: Represents the servo axis.
● Output device 1: Select the servo drive.

b. Detailed settings

● Select the PDO mapping objects according to step 8, which is to assign the
output parameters (controller to device) and input parameters (device to
controller). Note that the object name, node number, and index number must
be set correctly. Each mapping object selected in step 8 must be assigned
correctly. Otherwise, an error will be reported.



Communication Configuration Instance

‑157‑

● 60FDh must be mapped to the same as that in the Omron controller, as
shown in the following interface. bit0...bit2 of SV680‑INT indicate the negative
position limit, positive position limit, and the home respectively. bit16...bit20
indicate the status of DI1...DI5.

Note
The Omron software tool only allows you to configure axes for the SV680N‑INT series
manually.

Setting unit conversion

Set Command pulse count per motor rotation based on the resolution of the motor
encoder (example: 67108864 PPR for motor equipped with 26‑bit encoder). For the
convenience of commissioning, set the Work travel distance per motor rotation to
60 mm/rev, indicating 1 mm/s equals to 1 RPM of the motor.

Select the Display Unit based on the actual running unit when setting the gear ratio.
All the position‑type parameters in the host controller will be displayed in this unit.

Operation settings



Communication Configuration Instance

‑158‑

● Velocity/Acceleration/Deceleration: Set the maximum speed of the load (if the
motor speed converted exceeds 1900 RPM, a parameter setting error) which is
marked by a red box, will be reported by the host controller software) according to
actual conditions. If the acceleration/deceleration rate is 0, the motion profile will
be generated based on the maximum acceleration/deceleration rate (there is no
need to set the acceleration/deceleration rate in general cases).

● Torque: If the warning value is 0, no warning will be reported. There is no need to
set the warning value in general cases.

● Monitor: Set Positioning Range and Zero Position Range based on actual motor
and mechanical conditions. If the set value is too small, positioning or homing
may not be completed.

Position limit



Communication Configuration Instance

‑159‑

You can use the function of software position limit. The software position limit will be
activated after homing.

Homing

The homing mode involves cooperation between the servo drive and host controller.
Set the homing mode according to the following table.

Description of NX Software Servo Drive Function Terminal Configuration
Home proximity signal Home switch (FunIN.31) ‑

Positive limit input P‑OT (FunIN.14) DI1

Negative limit input N‑OT (FunIN.15) DI2



Communication Configuration Instance

‑160‑

Select the homing mode of the host controller and set the homing speed,
acceleration, and home offset based on actual mechanical conditions.

● Introduction to homing
Function block: MC_Home and MC_HomeWithParameter

1. Set MC_Home in the preceding figure and MC_HomeWithParameter in the
function block.

2. The two function blocks both include 10 types of homing modes.

MC_Home MC_HomeWithParameter
Designate the homing action to be
modified.
0: Proximity reverse turn/home proximity
input OFF
1: Proximity reverse turn/home proximity
input ON
4: Home proximity input OFF
5: Home proximity input ON
8: Limit input OFF
9: Proximity reverse turn/home input mask
distance
11: Limit inputs only
12: Proximity reverse turn/holding time
13: No home proximity input/holding home
input
14: Zero position preset

● Home proximity input OFF: The search for the home signal starts after the falling
edge of the home proximity switch is reached.

● Home proximity input ON: The search for the home signal starts after the rising
edge of the home proximity switch is reached.

● Proximity reverse turn: The home proximity signal is ON when homing starts, and
reverse running applies after the falling edge of the home proximity signal is
reached.

● Home input mask distance: The home signal is masked by the host controller
within the set distance after receiving the homing signal (for example, edge
change of home proximity signal), and the home signal is received only after the
set distance passes.

● Holding time: The home signal is masked by the host controller within the set
period of time after receiving the homing signal (for example, edge change of
home proximity signal), and home signal is received only after the set period of
time elapses.

● Zero position preset: The home offset is being written to the position reference/
position feedback in the host controller with current position as the home and
motor at a standstill.



Communication Configuration Instance

‑161‑

Note
In all the homing modes, the home signal is searched at low speed. In case of operations at
high speed, the home signal is hidden during decelerating from high speed to low speed.

Distributed clock

The default clock is 1 ms. The synchronization clock (cycle of primary fixed‑cycle
tasks) named "PDO communication cycle" can be modified in Task Settings. The
modification will be activated after switching to the online status at next power‑on.

Program-controlled servo operations
1. After configurations are done, you can control the servo operations through the

PLC program.
If the MC_POWER module is used, it is recommended to add the servo status bit
MC_Axis000.DrvStatus. Ready (MC_Axis000 is the axis name). Where MC_Axis000 is
the axis name. This is to prevent the situation where the PLC program is running
but the communication configuration is not done.

2. After all the settings and programming are done, switch to the online state, and

click to download the program to the controller.



Communication Configuration Instance

‑162‑

Click to use the synchronization function. This function serves to compare the
difference between the current program and the program in the controller,
allowing users to determine whether to download the program to the controller,

upload it from the controller " " or leave it unchanged based on the
differences.

You can monitor the data through the monitoring list or collect the data waveform
by using the data tracking function during operation.

5.3.3 SV680N-INT and Beckhoff Controller

This section describes how to configure the SV680N‑INT servo drive for working with
Beckhoff TwinCAT3.



Communication Configuration Instance

‑163‑

Figure 5‑4 Configuration flowchart

Installing the TwinCAT software
The TwinCAT3 software, which supports Windows7 32‑bit or 64‑bit systems, can be
downloaded from the official website of Beckhoff.

Note
The Ethernet card must be 100 M Ethernet card equipped with Intel chip. If other brands are
used, the EtherCAT operation may fail.

1. Copy the SV680N‑INT EtherCAT configuration file (SV680_1Axis_V0.04‑0506) to the
TwinCAT installation directory: TwinCAT\3.1\Config\Io\EtherCAT.

2. Open TwinCAT3 and create a New Twincat3 Project.



Communication Configuration Instance

‑164‑

Installing the network adapter driver
Install the TwinCAT network adapter driver.

1. Open Show Real Time Ethernet Compatible Devices… in the menu shown in the
preceding figure to display the following dialog box. Select local connection under
Incompatible devices, and click Install.



Communication Configuration Instance

‑165‑

2. After installation is done, the network adapter installed will be displayed under
Installed and ready to use devices(realtime capable).

Search for devices.
1. Create a project and start searching for devices. Select

, and click as shown below.
See the following figure:



Communication Configuration Instance

‑166‑

2. Click OK.

3. Click OK.



Communication Configuration Instance

‑167‑

4. Click OK.

5. Click OK.



Communication Configuration Instance

‑168‑

6. Click Cancel.

7. The search for the device is done, as shown below.



Communication Configuration Instance

‑169‑

Configuring servo drive parameters
Configure parameters through SDO communication in CoE ‑ Online interface. When
H0E.01(200E‑02h) is set to 3, the parameter values modified through SDO
communication will be saved upon power failure. To modify 6060h to the CSP mode
(8), follow the procedure shown in the following figure.

Note
This operation is available only when H02.00 (Control mode) is set to 9 (EtherCAT mode).

Configuring PDO
Select 0x1600 and 0x1A00 as shown in the following figure. Change the current PDO
only if it does not fulfill your needs. To modify the PDO, right‑click on the PDO



Communication Configuration Instance

‑170‑

Content window, click Delete to delete the redundant PDO or click Insert to add the
PDO needed.

Activate the configuration and switch to the operation mode.

1. Click .



Communication Configuration Instance

‑171‑

2. Click OK.

3. After you click OK, the device enters OP status as shown in the Online interface.
Meanwhile, the 3rd LED on the keypad displays "8", and the keypad displays _88RY.



Communication Configuration Instance

‑172‑

Controlling servo drive operation
Control the servo drive through NC or PLC programs.

1. For operating in CSP mode

a. Set the unit.
Set the unit to "mm" during the test.

b. Set the scaling factor.

Scaling factor: Indicates the distance corresponding to the encoder pulses per
position feedback.



Communication Configuration Instance

‑173‑

For example, 67108864 PPR corresponds to a distance of 60 mm, and the scaling
factor is: 60/67108864 = 0.00000089406967163 mm/Inc.

c. Set the encoder feedback mode to PosVelo.

Descriptions for Other Settings:

Encoder mode: There are three encoder modes: POS, POSVELO, and
POSVELOACC.

● POS: The encoder only calculates the position, which is used when the
position loop is in the servo drive.

● POSVELO: The encoder only calculates the position, which is used when the
position loop is in TWinCAT NC.

● POSVELOACC: The TWinCAT NC uses the encoder to determine the position,
speed, and acceleration.

d. Jogging test
Hide the system deviation temporarily.



Communication Configuration Instance

‑174‑

Click Set to display a dialog box and then click All to enable the servo drive.
Perform jogging through F1 to F4. The jog speed is set as follows.

2. Controlling the servo drive operations through the PLC

a. Create a PLC program.



Communication Configuration Instance

‑175‑

b. Add a motion control library for calling the motion control function blocks.

c. Create a POU program.

d. Call the motion module to implement some simple actions and input the final
program to PLCtask.



Communication Configuration Instance

‑176‑

e. Link the axis to the variable defined in the PLC.

f. Compile the program. If there is not fault, activate the configuration and log onto
the PLC.

g. Click Start to make the servo drive run.



Communication Configuration Instance

‑177‑

3. Controlling the servo drive operations through the HMI
Add the HMI interface to control the servo drive through the HMI interface.

Use the scope view function.
1. Add a scope view project as shown in the following figure.



Communication Configuration Instance

‑178‑

2. Add parameters to be monitored and monitor these parameters during operation
of the PLC.



Communication Configuration Instance

‑179‑

5.3.4 SV680N-INT and KEYENCE KV7500 Controller

5.3.4.1 Configuring the Servo Drive

● Servo drive version
It is recommended to use the device description file "SV680N‑INT‑Ecat_v0.09.xml"
or above for trial run of SV680N‑INT series servo drives. It is recommended to use
the MCU software of version 901.4 (H01.00 = 901.4) or later for the drive.

● Related Parameters
The definition of 60FDh of the SV680N‑INT series differs from that of IS620N: bit0:
negative limit; bit1: positive limit; bit2: home switch; bit16...bit20 correspond to
DI1...DI5 respectively.

5.3.4.2 Configuring KEYENCE KV7500 Software Tool

As software tool versions earlier than KV STUDIO 9.45 do not support extension of
KEYENCE EtherCAT module "KV‑XH16EC", the version of the KEYENCE software tool
used must be KV STUDIO 9.45 or later.

Figure 5‑5 Configuration flowchart

Unit configuration setting
Create a project and click OK to display the following window.



Communication Configuration Instance

‑180‑

Click Yes, No, or Read unit setting as needed.

● Click Read unit setting when the physical PLC unit is connected properly and able
to communicate with the software tool. The software tool obtains unit
configurations automatically according to the physical connection.

● If you click Yes, the Unit editor window opens, allowing you to select units for
configuration through dragging or double‑clicking.

● If you click No, you can click Tool > Unit editor or double‑click [0] KV7500 under
Unit configuration.



Communication Configuration Instance

‑181‑

Axis configuration setting
1. Enter “Axis configuration setting”.
2. Double‑click “Register ESI file”.

3. Find the storage directory of the device description file ".xml" and open it.
4. Importing the “. XML” file.

5. After the device description file is imported, you can start to add axes. You can also
set the control period in “Axis configuration setting”. The default control cycle is 1
ms and the minimum control cycle is 250 us.



Communication Configuration Instance

‑182‑

6. You can add the axes needed through dragging or double‑clicking. Select the
corresponding axis and set critical information such the Encoder resolution, Max.
motor speed, and Max. motor torque for this axis.

7. You can add PDO setting in detailed setting of the slave.

8. If extension setting is needed, set Extension setting to Enable.



Communication Configuration Instance

‑183‑

9. For motion function settings, you can double‑click or click on the combo box (small
triangle icon) to select the PDO configuration needed from the dropdown list.
You can also right‑click > Automatic assignment > Yes, in this way the assigned
contents will correspond to preceding PDO contents automatically.

During manual assignment, do not neglect any contents in the PDO mapping.
Otherwise, a pop‑up window will be displayed to remind you of the missing
contents when you click OK. For Communication command at initialization, DC
setting, and Advanced settings, use the default values. After settings are done, click
OK.

10. After Slave detailed setting is done, the exclamation symbol disappears.



Communication Configuration Instance

‑184‑

11. After adding the axes, click OK, and the following dialog box opens, asking you
whether to set up coordinate (namely electronic gear ratio) transformation.

● Click Yes and the coordinate transformation dialog box opens. Set mechanical
parameters and the coordinate unit based on actual conditions and click
Execute calculation. The software calculates the denominator and numerator
for coordinate transformation automatically and writes parameters to Axis
control setting automatically.



Communication Configuration Instance

‑185‑

● If you click No, you can click Tool > Coordinate transformation calculation > KV‑
XH setting > Coordinate transformation calculation.

Axis control setting
1. To open axis control setting, click Tool > Axis configuration setting > KV‑XH setting >

Axis control setting, or click Axis control setting under Project.
2. In axis control setting, you can set items including Unit coordinate transformation,

Software limit coord, Axis error, Axis control function, Common in position control,
Operation speed, and JOG.



Communication Configuration Instance

‑186‑

Running setting
Homing

Before homing, assign (+) limit switch, (‑) limit switch, and Origin sensor in Motion
function setting under Axis configuration setting to each bit of 60FDh. 60FDh is
defined as follows:

bit0: negative limit; bit1: positive limit; bit2: home switch; bit16...bit20 correspond to
DI1...DI5 respectively.

In automatic assignment, you need to assign (+) limit switch, (‑) limit switch, and
origin sensor manually, you can assign them to corresponding bits of 60FDh based on
the relation shown in the following figure or to bit16...bit20, in this case, you also
need to assign them to corresponding DIs of the servo drive.



Communication Configuration Instance

‑187‑

Set the restriction parameters for homing in Axis control setting > Origin return. The
following homing methods are available. For detailed trajectories, see KEYENCE
instruction manual for positioning/motion control unit KV‑XH16EC.



Communication Configuration Instance

‑188‑

Default Value range Description

DOG type
(with

phase Z)

DOG type (with phase
Z)

Decelerating upon DOG signal input and homing
through phase Z signal

DOG type (without
phase Z)

Decelerating upon DOG signal input and homing
through falling edge of DOG signal

DOG‑type jogging
(with phase Z)

Pausing after moving based on Dog ON upon DOG
signal input.
Then moving to the homing direction through
position‑type speed control and homing with phase Z
signal.

DOG‑type jogging
(without phase Z)

Moving based on Dog ON upon DOG signal input
before homing

DOG type (contact)
Homing executed when the ON duration of the
torque limit signal keeps longer than the
compression torque time upon DOG signal input

Origin sensor and
phase Z

Homing executed in the initial phase Z position after
the origin sensor is ON

Rising edge of origin
sensor

Homing executed through the rising edge of the
origin sensor

Middle point of origin
sensor (without phase
Z)

Taking the middle point of the ON range of origin
sensor as the origin and comparing it with that in
"Rising edge of origin sensor". Even if the light‑
receptive performance of the origin sensor degrades,
the homing position can hardly change with the time.

Rising edge of limit
switch

Homing executed with the limit switch in the
negative direction (direction where the current
coordinate decreases) acting as the origin sensor

Immediate homing of
phase Z Homing executed with phase Z signal

Data setting type Taking current coordinate as the origin coordinate

The following homing methods are available in IS620N and SV680N‑INT series servo
drives.

No. Homing mode IS620N SV680N‑INT

1 DOG‑type (with phase
Z) OK OK

2
DOG‑type (without
phase Z) OK OK

3
DOG‑type jogging
(with phase Z) No No

4
DOG‑type jogging
(without phase Z) No No



Communication Configuration Instance

‑189‑

5 DOG‑type (contact) OK

Homing is available, but
the reference coordinate
after homing is not 0.
Updating to the xml
coordinate of IS620N zeros
out the reference
coordinate.

6
Origin sensor and
phase Z OK OK

7 Rising edge of origin
sensor OK OK

8 Middle point of origin
sensor No No

9 Rising edge of limit
switch

Homing is available, but
the reference coordinate
after homing is not 0.

Homing is available, but
the reference coordinate
after homing is not 0.

10
Immediate homing of
phase Z OK OK

Positioning

Set the unit coordinate transformation properly before positioning. The unit
coordinate transformation is "PLS" by default, which allows no modification on the
numerator or denominator. Assume N revolutions are required by the servo drive, in
this case, the number of commands that need to be sent by the host controller is N x
Pulses per revolution. If coordinate transformation calculation has been executed, the
unit coordinate transformation parameters will correspond to the unit transformation
results automatically.

1. To set the motion profile of the servo drive, click Tool > Point parameter.



Communication Configuration Instance

‑190‑

Set the target coordinate and speed per positioning segment as needed. After
settings are done, you can call the corresponding point number through the
program to start operation.

2. You can preview the parameter trajectory through the following short‑cut.

3. You can write ladder diagrams through regular methods. You can also use the
following short‑cut method provided by KEYENCE.

a. Drag down the Point parameter window with the left mouse button, and zoom
out the window to put it in a proper place.

b. Move the mouse to the point parameter, such as "No.1‑Axis1", and wait until the
mouse icon to change from an arrow to a small hand. Then drag towards the



Communication Configuration Instance

‑191‑

program edit interface with the right mouse button, and the following short‑cut
pops out.

c. Select the desired function.
If the operation is enabled, click it to automatically generate a DEMO program.
Then designate the part in red as the relay needed. After these actions are done,
this function is done compiling.

4. Unit monitor
The unit monitor supports monitoring on the operating state of KV‑XH16EC or the
internal data.

a. Open “Unit monitor”. There are three ways:

● Select the unit to be monitored and right‑click to select Unit monitor in the
short‑cut menu.



Communication Configuration Instance

‑192‑

● Double‑click with left mouse button to open the Unit monitor.
● Right‑click the blank section in the main program to select Unit monitor in

the pop‑up menu.

b. The unit monitor displays the operating state of each axis.

1). To change the operating state of the monitor item, click Monitor item setting
on the top right corner.



Communication Configuration Instance

‑193‑

2). To check whether I/O signals such as limit switch signals and origin sensor
signals are normal, open Unit monitor and find the corresponding monitoring
position.
If corresponding message is received, a small black circle will be displayed.

The error state of the unit can also be displayed in the Unit monitor. The axis
error can be cleared using the Error clear button in the bottom right.



Communication Configuration Instance

‑194‑

5.3.4.3 Trial Run

In trial run, actions can be acknowledged directly, without the need for programming
ladder diagrams.

1. You can find the Trial run button at the bottom right of the unit monitor interface.
2. Select the control mode from positioning control, speed control, and torque

control.
3. Then, select the object axis for trial run.

Note
If trial run is executed in the speed control mode or torque control mode, a warning will be
reported. To execute trial run, set the control mode to position control.

The following introduces trial run → positioning control.

1. OP enable/Servo ON.
Unrelated to the status of the ladder diagram program. OP enable and Servo ON
can be executed through Commissioning. After operations are done, the Operation
ready and Servo ready indicators turn green. To ensure safety, set the CPU unit to
PROG mode and execute operations again after stopping ladder diagram program.

Confirm the following items when the Servo ready indicator is not in green.

● No error occurs on the axis.
● No warning occurs on the servo drive.
● The main circuit power supply of the servo drive is switched on.
● The Ethernet cable is connected.



Communication Configuration Instance

‑195‑

2. Axis error/Error clear
Check the error details and clear the error. After rectifying the error cause, click the
Clear button to clear the error.

3. JOG.
Click the "FWD" and "REV" buttons to perform JOG operation in forward/reverse
directions respectively. The jogging speed is the value in General Axis Control
Settings→JOG High Speed multiplied by a ratio. You can set the ratio at a 1%
increment between 10% and 100%.

4. Inching.
Click the "FWD" and "REV" buttons to perform inching in forward/reverse directions
respectively. The inching runs at the speed specified in General Axis Control
Settings→JOG Start Speed. The inching runs with the movement specified in
General Axis Control Settings→JOG Inch Movement.

5. Origin return
Click the Origin return button to execute homing.

6. Teaching
Click the Acquire button to save current command coordinate value to the buffer
memory of the target coordinate of the designated point number. The teaching
function is available only in the online edit mode. The teaching value will also be
reflected to the buffer memory and the point parameter.

7. Trial run
Designate a point number and click the Start button to execute point positioning.
To stop operation, click the Stop button. Clicking the 1 point operation button
makes the servo drive execute positioning of one point. Clicking the Cont.
operation button makes the servo drive execute positioning of ten points at most.
Clicking the Repeat button makes the servo drive return to the point in the first row
and execute positioning repeatedly after positioning of the point in the last row is
done. The time interval between points can be set to a value within 0.1s to 20.0s.

8. Changing current coordinate
Click Command coordinate and the Changing current coordinate dialog box opens.
Enter the coordinate needing to be changed and click the Change button to change
the current coordinate of the axis in trial run, and then close the Changing current
coordinate dialog box. If you click the Close button after changing current
coordinate, the Changing current coordinate dialog box will be closed with current
coordinate unchanged.



Communication Configuration Instance

‑196‑

5.3.5 SV680N-INT and EASY Controller

This section describes how to configure the SV680N‑INT series servo drive for
cooperation with the EASY series controller.



Communication Configuration Instance

‑197‑

1. Open the software, and create an EASY project.

a. Open Autoshop and click "New Project". In the popup dialog box, first select the
editor type, and then select Easy500 as the PLC type.

b. Enter the project name and select the save path, and then click "OK" to create a
new project and enter the project main interface.



Communication Configuration Instance

‑198‑

2. Importing device XML

a. Open the toolbox and find the EtherCAT Devices list.

b. Right‑click on EtherCAT Devices, and in the pop‑up dialog box, select the desired
XML file and import it.



Communication Configuration Instance

‑199‑

c. You need to restart the application to let the imported xml take effect.

After clicking "OK", you need to restart the application manually to let the newly
added device take effect.

d. After reopening the application, you can see the newly added device.



Communication Configuration Instance

‑200‑

3. Adding a slave station
First, connect the PLC through Ethernet.

a. Select the target host.



Communication Configuration Instance

‑201‑

b. Set whether to automatically associate motion control axes as needed.
If you select "Auto create axis and associate slave station when creating new
slave station" in EtherCAT Settings, a motion control axis will be automatically
added for each drive‑type EtherCAT slave station.



Communication Configuration Instance

‑202‑



Communication Configuration Instance

‑203‑

c. Right click the EtherCAT tab and select Auto Scan.



Communication Configuration Instance

‑204‑



Communication Configuration Instance

‑205‑

d. Select Start Scan in the pop‑up dialog box. After the scan completes, you can see
all scanned slave devices. Click Update Configuration to update the scanned
devices to the configuration list.

e. The configuration list is as follows. The SV680I in the configuration will be
automatically associated with the motion control axis.



Communication Configuration Instance

‑206‑

4. Configuring PDO
The Process Data interface is used to edit PDO. The interface is as follows:

PDOs include output PDOs and input PDOs in terms of data flow direction. The
output PDO represents the process data sent by the EtherCAT master station to the
EtherCAT slave station, such as the control word 0x6040. The input PDO represents



Communication Configuration Instance

‑207‑

the process data sent by the EtherCAT slave station to the master station. Each
slave station may have multiple groups of PDOs or a single group of PDOs, as
shown in the above figure. Some PDOs can be added and deleted.

PDO control according to control requirements in process data.

5. Configuring axis parameters

a. In Genera Setting, you can set the axis type and select the physical driving
device.. The interface is as shown below.

b. In Scaling, select 16#4000000 for the 26‑bit encoder and 16#800000 for the 23‑bit
encoder.

c. In General Setting, you can set the software position limit and the operation
mode. The interface is as follows. Note that the parameter lists displayed vary
with different axis types you select.



Communication Configuration Instance

‑208‑

d. Select the homing mode according to actual needs. For details, see section
"Homing Mode" in SV680‑INT Series Servo Drive Function Guide for details.

6. Controlling servo drive operation
After configurations are done, you can control the servo drive operations through
the PLC program.



Communication Configuration Instance

‑209‑

7. Compiling
After compiling the program, click the icon indicated by the red square box to
check whether the program is correct.

8. Downloading and commissioning
After checking that the program is correct, download the program to PLC. The

program can be activated after running. Click to switch the PLC to operation
state.



*PS00015535A01*


	Preface 
	Fundamental Safety Instructions 
	1 Communication Protocols 
	2 Modbus Communication [P] 
	2.1 Communication 
	2.1.1 Communication technical data 
	2.1.2 Protocols 

	2.2 Hardware Configuration 
	2.2.1 Terminal Layout 
	2.2.2 RS485 Communication Connection Example 

	2.3 Communication Transmission Mode 
	2.4 Data Frame Structure 
	2.5 Communication Parameters 

	3 CANopen Communication [P] 
	3.1 Communication 
	3.1.1 Communication Technical Data 
	3.1.2 Protocols 

	3.2 Hardware Configuration 
	3.2.1 Terminal Layout 
	3.2.2 CAN Communication Connection Example 

	3.3 Communication Transmission Mode 
	3.4 Data Frame Structure 
	3.4.1 Network Management System (NMT) 
	3.4.2 Service data object (SDO) 
	3.4.3 Process Data Object (PDO) 
	3.4.4 Synchronization Object (SYNC) 
	3.4.5 Emergency (EMCY) Object Service 
	3.4.6 SDO Transmission Message 
	3.4.7 SDO transmission framework 

	3.5 Communication Parameters 
	3.6 PN-to-CANopen bridge 

	4 EtherCAT Communication [N] 
	4.1 Communication 
	4.1.1 Communication technical data 
	4.1.2 Communication Specifications 
	4.1.3 Protocols 

	4.2 Hardware Configuration 
	4.2.1 Terminal Layout 
	4.2.2 EtherCAT Communication Connection Example 

	4.3 Communication Transmission Mode 
	4.3.1 Structure of EtherCAT Communication 
	4.3.2 Communication State Machine 
	4.3.3 Distributed clock 
	4.3.4 Status Indication 

	4.4 Data Frame Structure 
	4.4.1 Process data 
	4.4.2 Service Data Object (SDO) 

	4.5 Communication Parameters 

	5 Communication Configuration Instance 
	5.1 Modbus Communication Configuration Case [P] 
	5.1.1 Communication Overview 
	5.1.2 Wiring of Modbus RTU Communication Between SV680P-INT and Third-Party PLCs 
	5.1.3 Servo Parameter Settings 
	5.1.4 PLC Program Examples 

	5.2 CANopen Communication Configuration Case [P] 
	5.2.1 Connecting SV680P-INT to Schneider 3S Master 
	5.2.2 Connecting SV680P-INT to Beckoff CANopen Master 
	5.2.3 Connecting SV680P-INT to Inovance H3U CANopen Master 
	5.2.4 Connecting SV680P-INT to Inovance EASY CANopen Master 

	5.3 EtherCAT Communication Configuration Case [N] 
	5.3.1 SV680N-INT and AM600 Controller 
	5.3.2 SV680N-INT and Omron Controller 
	5.3.3 SV680N-INT and Beckhoff Controller 
	5.3.4 SV680N-INT and KEYENCE KV7500 Controller 
	5.3.4.1 Configuring the Servo Drive 
	5.3.4.2 Configuring KEYENCE KV7500 Software Tool 
	5.3.4.3 Trial Run 

	5.3.5 SV680N-INT and EASY Controller 



